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Abstract

A ∆-regular graph G is conformable if it has a (∆ + 1)-vertex coloring where the cardi-
nality of each vertex color class has the same parity as the order of the graph. A general
characterization for conformable graphs is unknown. The importance of conformability is due
to the fact that it can be an auxiliary tool toward determining the total chromatic number of
a regular graph. Being conformable is a necessary condition for a graph to be Type 1. In this
paper, we show a positive evidence to the conjecture proposed in 2018 which states that all
line graphs of complete graphs L(Kn) are Type 1, by proving that they are all conformable.
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1. Introduction

Let G = (V,E) be a simple connected graph. A k-total coloring of G is an assignment of
k colors to the vertices and edges of G so that adjacent or incident elements have different
colors. The total chromatic number of G, denoted by χ′′(G), is the smallest k for which G
has a k-total coloring. Clearly, χ′′(G) ≥ ∆(G) + 1 and the Total Coloring Conjecture (TCC)
states that the total chromatic number of any graph is at most ∆(G) + 2, where ∆(G) is
the maximum degree of the graph [1, 2]. If the TCC holds, graphs with χ′′(G) = ∆(G) + 1
are called Type 1, and graphs with χ′′(G) = ∆(G) + 2 are called Type 2. In 1989, Sánchez-
Arroyo [3] proved that determining the total chromatic number of an arbitrary graph is a
NP-hard problem.

A Type 1 graph has a nice structural property due to Chetwynd and Hilton [4]. Let the
deficiency of G be def(G) =

∑
v∈V (G) (∆(G)− dG(v)), where dG(v) is the degree of a vertex

v in G. A vertex coloring ϕ : V (G)→ {1, 2, ...,∆(G)+1} is called conformable if the number
of color classes (including empty color classes) of parity different from that of |V (G)| is at
most def(G). Note that since regular graphs have deficiency 0, each color class has the same
parity as |V (G)|. A graph is conformable if and only if it has a conformable vertex coloring,
since otherwise it is called non-conformable.

It is well known that every Type 1 graph is conformable [4]. In the same paper, Chetwynd
and Hilton conjectured that for graphs with maximum degree greater than one half of their
order the converse is essentially true. However, in some cases this is not true: For instance,



the complete bipartite graphs Kn,n, for even n > 1, and the Möbius ladders M2n, for n > 3,
are conformable and Type 2 [4]. Determining suitable conformable vertex colorings or proving
the non-conformability of a graph G are usefull tools to determine the total chromatic number
of a graph. Indeed, every non-conformable graph is Type 2 and suitable conformable vertex
colorings may be extended to (∆(G) + 1)-total colorings.

There are few results on conformability, such as a characterization of non-conformability
of some graphs and the verification of Chetwynd and Hilton’s conjecture for special classes
of graphs [5, 6]. In this paper, we prove that the line graphs of complete graphs L(Kn) are
conformable, contributing to the conjecture proposed by Vignesh et al. [7] in 2018 that all
line graphs L(Kn) are Type 1. Note that the small cases L(K3) ' K3 and L(K4) ' C2

6 are
trivial examples of Type 1 graphs.

2. Main Result

In this section, we prove that all graphs L(Kn) are conformable. Note that V (L(Kn)) =
n(n−1)

2
, and first we mention a usefull lemma.

Lemma 1. If G is regular of degree k, then L(G) is regular of degree 2k − 2.

Consequently, the degree of L(Kn) is 2(n− 1)− 2 = 2n− 4 and so in order to prove that
L(Kn) is conformable, we exihibt a vertex coloring with ∆(L(Kn)) + 1 = 2n− 3 colors such
that the number of vertices in each color class has the same parity as |V (L(Kn))|.

Theorem 1. The graphs L(Kn) are conformable.

Proof. First consider V (Kn) = {v0, v1, ..., vn−1}. By definition of line graphs, each edge of
Kn is identified with a vertex in L(Kn).

The proof is separated into two cases as follows:

• For n odd: let n = 2k − 1, the number of vertices of L(Kn) is given by n(n−1)
2

=
(2k − 1)(k − 1). So, we consider the cases where k is odd and k is even, separately.

If k is odd, then the number of vertices of L(Kn) is even. Therefore, for each 1 ≤ p ≤ n,
we will define the set Cp as the set of vertices of L(Kn) with color p. This is given by
Cp =

{
vp−1−qvp−1+q | 1 ≤ q ≤ n−1

2

}
, with vi ∈ V (Kn) where the indexes of the vertices

are considered modulo n. Note that Cp is a maximum matching in Kn, and so it
is a maximal independent set on L(Kn). Moreover,

⋃n
i=1Ci = E(Kn) = V (L(Kn)).

Consequently this vertex coloring is conformable, because |Cp| = n−1
2

= k − 1 is even
and we use ∆(L(Kn))+1 colors (where n−3 color classes are empty). Figure 1a shows
an example of the vertex coloring for this case.

If k is even, then the number of vertices of L(Kn) is odd. We use Cp as before, for
1 ≤ p ≤ n − 2. The vertices vn−2−qvn−2+q and vn−1−qvn−1+q will be assigned with
colors n − 1 + q − 1 and n + q − 1 + n−1

2
− 1, respectively for each 1 ≤ q ≤ n−1

2
. As



|Cp| = n−1
2

= k−1 is odd, the colors assigned to vn−2+qvn−2−q and vn−1+qvn−1−q appear
only once and we use n − 2 + n−1

2
+ n−1

2
= 2n − 3 = ∆(L(Kn)) + 1 colors. So, we

conclude that this vertex coloring is conformable. Figure 1b shows an example of the
vertex coloring for this case.

(a) Conformable vertex col-
oring for L(K5)

(b) Conformable vertex col-
oring for L(K7)

Figure 1: A depiction of a conformable vertex coloring for L(Kn), with n odd.

• For n even: let n = 2k, note that the number of vertices of L(Kn) is given by n(n−1)
2

=
k(2k − 1). Therefore, we consider the cases where k is odd and k is even, separately.

If k is odd, then the number of vertices of L(Kn) is odd. So, we define the set Ap as
the set of vertices of L(Kn) with color p. It is given by Ap =

{
vp−qvp−1+q | 1 ≤ q ≤ n

2

}
,

with 1 ≤ p ≤ n
2
. The Figure 2 shows the set Ap for L(K10) by edge coloring of K10.

Note that Ap is a maximum matching of Kn for each p. Moreover, Kn\
⋃n

2
p=1Ap are two

copies of Kn
2
' Kk. That is, the subgraph induced by the vertices of odd indexes is the

graph Kk, as well as the subgraph induced by the vertices of even indexes is the other
graph Kk. Let ui = v2i and wi = v2i+1, with 0 ≤ i ≤ n

2
− 1. Consider the set of color

j = n
2

+ p as Bj = {uj−1−quj−1+q | 1 ≤ q ≤ k−1
2
} ∪ {wj−1−qwj−1+q | 1 ≤ q ≤ k−1

2
− 1},

with 1 ≤ p ≤ k − 1 and the indexes of vertices are considered modulo k. Figure 2
shows an example of the construction of a vertex coloring using Bj for L(K10). The
remaining 2k− 2 uncolored edges of each Kk will receive different colors from the ones
used until now, i.e., each one of these edges is an element of a different color class.

We used k + k − 1 + 2k − 2 = 4k − 3 = 2n− 3 = ∆(L(Kn)) + 1 colors. Moreover, the
parity of each class of color |Ap| = k is odd as well as |Bj| = k−1

2
+ k−1

2
− 1 = k − 2,

and finally the remaining color classes, which have only one element, have parity odd.
Therefore, we conclude that this vertex coloring is conformable.



Figure 2: (a) The set Ap to K10 for each 1 ≤ p ≤ 5, represented by edge with red color; (b) the induced
subgraph that are two copies of K5; (c) and the set Bj to 2 copies of K5, for each 6 ≤ j ≤ 9.

If k is even, then the number of vertices of L(Kn) is even. First we consider Ap0 ,
defined as above with 1 ≤ p0 ≤ n

2
. The Figure 3 shows the set Ap0 for L(K8) by

edge coloring of K8. Similarly, Kn \
⋃n

2
p0=1Ap0 results in two copies of Kk. As k is

even, so k = 2k1. If k1 is even we can repeat, recursively, this process again, using
An

2
+p1 in each Kk1 , where 1 ≤ p1 ≤ n

4
(Figure 3) and end when for some kj we have

Kkj \
⋃ n

2j

pj=1A∑j−1
i=1

n

2i
+pj

= ∅. If at any time we have kj odd, then we apply the coloring

C`, with ` =
(
n
2

+ n
4

+ · · ·+ n
2j

)
+pj and 1 ≤ pj ≤ kj−1, for each copy Kkj . Note that,

for any color λ used in Aλ, |Aλ| is even and in every process |C`| is used for even copies.
Therefore, the parity of each color class is the same to the number of vertices and we use

at most
(n

2 )
(
1−( 1

2)
blog2 nc

)
1− 1

2

= n
(

1−
(
1
2

)blog2 nc) colors, with n
(

1 +
(
1
2

)blog2 nc)− 3 color

classes with zero occurrences. We conclude that this vertex coloring is conformable.

Figure 3: (a) The set Ap0 to K8, for each 1 ≤ p0 ≤ 4, represented by edge with red color; (b) the induced
subgraph that are two copies of K4; (c) the set An

2 +p1
to 2 copies of K4, for each 5 ≤ p1 ≤ 6; (d) and the set

An
2 +n

4 +p2
to 4 copies of K2, for p2 = 7.



3. Conclusion

In this paper, we proved that all line graphs L(Kn) are conformable. Note that we can
easily extend our conformable vertex coloring of L(K5) to a total coloring of this graph,
showing that L(K5) is Type 1 (Figure 4). This is a single and preliminar evidence that the
conjecture proposed by Vignesh et al. [7] is valid and we will continue to investigate this
conjecture.

Figure 4: A (∆(L(K5)) + 1)-total coloring to L(K5).
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