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Abstract

The Maximum Clique Problem consists of finding in a simple graph the largest subset of
vertices wherein each pair of vertices is connected by an edge. It is an NP-Hard problem with
many practical applications. In this paper we show how to implement an oracle for Grover’s
Quantum Search, yielding a quantum algorithm for finding the maximum clique in an n-
vertex simple graph. The yielded algorithm has overall time complexity O(

√
2n(n log n)2)

and space complexity O(n2).
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1. Introduction

In graph theory, a clique in a simple graph is a subset of vertices wherein every pair
of distinct vertices are adjacent (connected by an edge). Throughout this text, a graph is
always a simple graph. A maximal clique is a clique that is not contained in a larger clique in
the same graph. A maximum clique is a largest maximal clique of a graph. Determining the
cardinality of the maximum clique in a graph is a well-known NP-Hard problem [1]. The best-
known classical algorithm for this problem has time complexity O(3

n
3 ). The Maximum Clique

Problem is also hard to approximate [2], i.e. for any ε > 0, there cannot be a polynomial-time
approximation algorithm for the problem within an O(n1−ε) approximation factor, unless
P = NP.

Grover’s Quantum Search is a quantum1 search algorithm that provides a polinomial
speedup over the best-known classical solutions for several important problems. This algo-
rithm uses the quantum superposition and interference phenomena to search in a set of pos-
sible solutions for a value x that satisfies a black-box Boolean function f : {0, 1}n → {0, 1},
referred to as the oracle for the problem, that is, f(x) = 1 when x is a solution for the

1We refer the reader to: Nielsen and Chuang [3] for preliminaries on Quantum Computing and Quantum
Mechanics; Diestel [4] for preliminaries on Graph Theory.
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problem, and f(x) = 0 otherwise. After O(
√

2n) evaluations of the function, the probability
that a solution is found is 1−O(1/n).

Bojié [5] proposed an algorithm based on Grover’s Quantum Search for finding a maximum
clique in a simple graph G. He uses an iterative approach for searching a clique in a list of
subgraphs with at least k vertices, starting at k = 1. For each iteration k, the clique is
found by running a Grover’s Search. After each iteration, the value of k is incremented
until no clique is found. The author mentions the use of a binary search instead an iterative
approach to speedup the algorithm by a log n factor. However, the author does not provide
the implementation of the oracle for the Grover’s Search. They do not even consider the
complexity of the construction of such oracle; only its description is provided:

f(x) =

{
1, if x encodes a maximal clique with at least k elements;

0, otherwise.

Wie [6] proposed an algorithm based on Grover’s Quantum Search for finding all maximal
(not necessarily maximum) cliques in a graph G. The algorithm returns a superposition of
all quantum states that describe a maximal clique in G. The author includes the description
of the oracle, alongside with the instructions for creating the quantum circuit:

f(x) =

{
1, if x encodes a maximal clique;

0, otherwise.

Since a maximum clique is a maximal clique, we can use Wie’s oracle in Bojié’s algorithm
if the input state for Wie’s oracle consists of a superposition of all states that encode a
subgraph of G with at least k vertices.

In this paper we show how to prepare this input state for Wie’s oracle, leading to an
O(
√

2n(n log n)2)-time quantum algorithm for solving, with high probability, the Maximum
Clique Problem. Remark that this is better than the O(3

n
3 ) classical time, since

lim
n→+∞

√
2n(n log n)2

3
n
3

= 0 . (1)

It is also observed that the performance gain, compared to the classical solution, is lower than

the maximum square gain that Grover’s algorithm can provide, since
(√

2n(n log n)2
)2

> 3
n
3

for n > 1. Furthermore, our algorithm not only returns the cardinality of a maximum clique,
but also a superposition of all quantum states which encode a maximum clique in the graph.

2. The algorithm

We present an algorithm to prepare a quantum state that is a superposition of all states
that encode a clique candidate in G with at least k vertices, being k a fixed positive integer.



A clique candidate C in a graph G(V,E) is encoded as a binary string |x〉 = |x1x2...xn〉 with
n = |V | qubits, wherein each qubit represents a vertex vi of G and has the value:

|xi〉 =

{
|1〉 , if vi ∈ C;

|0〉 , otherwise.
(2)

Note that a clique candidate with k vertices has exactly k qubits in the state |1〉. So, to
find out the number of vertices in a clique candidate, we need to count the number of qubits
in state |1〉. If this is done on a unary basis, the problem comes down to an ordering of the
qubits in the binary string. In the unary basis we can also see if a clique candidate has at
least k vertices by verifying if the kth least significant qubit is in the state |1〉.

To count, on a unary basis, the number of qubits in the state |x〉 in a binary quantum
string, we have developed a quantum algorithm based on the classical insertion sort algo-
rithm. Substrings are iteratively ordered and expanded by inserting the remaining elements
in the correct position. Each element inserted is either placed at the end of the string (most
significant part), if it has value |0〉, or moved to the beginning (least significant part) if it
has value |1〉. This quantum circuit can be constructed with CNOT and CSWAP gates, as
described in Algorithm 1 and depicted in Figure 1.

Algorithm 1 Unary Qubit Counter

Input: |x〉 |a〉; wherein |a〉 = |00 . . . 0〉
Output: |x〉 |u〉; wherein |u〉 is a unary counting of the qubits of |x〉 in the state |1〉

1: for i ∈ [1, 2, . . . , n] do
2: apply a CNOT gate controlled by |xi〉, targeting |ai〉;
3: end for
4: for i ∈ [2, 3, . . . , n] do
5: for j ∈ [i, i− 1, . . . , 2] do
6: apply a CSWAP gate controlled by |xi〉, targeting |aj〉 and |aj−1〉;
7: end for
8: end for

The procedure for generating a superposition of all states with at least k vertices is based
on another Grover’s Quantum Search. This procedure aims to boost up the amplitude of
the states in the superposition |x〉 that represent a clique candidate with at least k vertices.
The oracle for this Grover’s Search is depicted in Figure 2. The circuit is divided in 4 stages:
Copy to ancilla, Count in unary, Apply function and Clear ancilla. The two first stages form
the unary qubit counter (Figure 1). In the third stage we apply the function to the quantum
state in a phase shift codification, as required by Grover’s Algorithm, where the phase of
the quantum input state |x〉 is inverted if f(x) = 1. This is done by applying a CNOT gate



Figure 1: Unary qubit counter for n = 3

targeting a qubit in |−〉 state and controlled by a qubit |c〉 such that:

|c〉 =

{
|1〉 , if f(x) = 1;

|0〉 , otherwise.
(3)

In this case, |c〉 is the kth least significant qubit in the unary counting. In the last stage, the
ancilla register is cleared by using a reversed circuit of the two first stages. Mathematically,
the quantum circuit for this oracle O can be expressed as:

O |x〉 = (−1)f(x) |x〉 . (4)

Figure 2: Quantum circuit for the oracle of the Grover’s Search to generate the superposition of all clique
candidates, with n = 3 and k = 2



The Grover’s Search will leave the states that do not satisfy the oracle with a low am-
plitude. We can remove these states from the superposition by the use of quantum collapse
and quantum entanglement phenomena. By adding another unary qubit counter at the end
of the circuit and measuring the kth least significant qubit of the counting, henceforth |r〉,
the system will collapse, and the register |x〉 will be leaved in a superposition of all desired
states if |r〉 = |1〉, or an a superposition of all undesired states if |r〉 = |0〉, according to the
quantum entanglement phenomena. By Grover’s effect, |r〉 will have a high probability of
collapsing in |1〉, so we can repeat all the procedures until |r〉 collapses in |1〉 and |x〉 will
be in the desired state of a superposition of all states with at least k qubits in |1〉. The full
circuit for this algorithm is depicted in Figure 3.

Figure 3: State generator for n = 3 and k = 2. The measurement is identified in the circuit by letter ‘M’.

3. Brief analysis

Recall that our approach uses a binary search to make O(log n) guesses for the value of
k, building, for each guess, a circuit in O(n2) time to prepare the input state for Wie’s oracle
through a Grover’s Search, and then running another Grover’s Search as in Wie’s paper.
This would yield an overall O(

√
2nn2 log n) time complexity, but, to guarantee an overall

1−O(1/n) probability of error, each Grover’s Search must be repeated some times.
Clearly, the probability p that our approach succeeds is bounded below by the probability

that every Grover’s Search individually and independently succeeds. Let pi be the probability
of success of the ith Grover’s Search, for 1 ≤ i ≤ 2dlg ne. To get p ≥ 1 − O(1/n), as
desired, it suffices to have each pi ≥ (1 − O(1/n))1/(2dlgne), which we claim to be achieved
by running each Grover’s Search blg nc times. The claim follows by observing that the
probability that all these blg nc iterations of Grover´s Search fail is O((1/n)lgn), which is less
than 1− (1−O(1/n))1/(2dlgne) for sufficiently large n. We have, then, our main result.



Theorem 1. There is an O(
√

2n(n log n)2)-time and O(n2)-space quantum algorithm which,
given an n-vertex graph G, outputs, with 1 −O(1/n) probability of success, a state which is
the superposition of all states which encode a maximum clique in G. �

4. Final remarks

During the reviewing process, one of the reviewers pointed to us that a more efficient
solution using Grover’s algorithm for the Maximum Clique Problem could be achieved by an
optimization algorithm such as the ones presented in [7] and [8]. For future work, we aim to
investigate this reviewer’s suggestion.
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