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1. Fullerene Graphs

1.1 Fullerene: A graph class modeling a molecule
In 1985 a new carbon allotrope was reported in the scientific community: C60.
A group of scientists, led by Englishman Harold Walter Kroto and Americans
Richard Errett Smalley and Robert Curl, trying to understand the mechanisms
for building long carbon chains observed in interstellar space, discovered a
highly symmetrical, stable molecule, composed of 60 carbon atoms different
from all the other carbon allotropes.

The C60 has a structure similar to
a soccer hollow ball (Figure 1),
with 32 faces, being 20 hexago-
nal and 12 pentagonal. They de-
cided to name the C60 buckminster-
fullerene, in honor of American ar-
chitect Richard Buckminster Fuller,
famous for his geodesic dome con-
structions, which were composed of
hexagonal and pentagonal faces.
At the end of the 1980s, other carbon
allotrope molecules with similar spa-
tial structure to the C60 were reported
called fullerene molecules [1].

Figure 1: Molecular structure of C60.

The buckminsterfullerene was the first new allotropic form discovered in the
20th century, and earned Kroto, Curl and Smalley the Nobel Prize in Chem-
istry in 1996. Nowadays fullerene molecules are widely studied by different
branches of science, from medicine to mathematics. These molecules are sup-
posed to contribute to transport chemotherapy, antibiotics or antioxidant agents
and released in contact with deficient cells.

1.2 Fullerene Graphs
Each fullerene molecule can be described as a planar graph in which the atoms
and the bonds are represented by the vertices and edges of the graph, respec-
tively, preserving the geometric properties of the original fullerene molecule.
Thus, we define a fullerene graph as cubic, planar, 3-connected graph whose
faces are pentagonal or hexagonal (Figure 2).

The famous Euler’s formula for con-
nected planar graphs n + f −m = 2
relates the number f of faces, the
number m of edges and the number
n of vertices, and implies that every
fullerene graph must contain exactly
12 pentagons, and that the smallest
fullerene graph is the well known do-
decahedron with 20 vertices where
all faces are pentagons [2].

Figure 2: Fullerene graph of C60.

1.3 Fullerene Nanodiscs
The fullerene nanodiscs, or nanodiscs Dr of radius r ≥ 2, are structures com-
posed of two identical flat covers connected by a strip along their borders. While
in the nanodisc covers there are only hexagonal faces, in the connecting strip,
besides the hexagonal faces, additional 12 pentagonal faces are arranged.
Please refer to Figure 3 where the smallest fullerene nanodisc graphs are de-
picted. In each fullerene nanodisc graph, we highlight in the connecting strip
the 12 pentagons.

Figure 3: The smallest fullerene nanodisc graphs.

A nanodisc graph of radius r ≥ 2, denoted by Dr, has its faces arranged into lay-
ers, one layer next the nearest previous layer starting from an hexagonal cover
until we reach the other hexagonal cover [2]. The sequence {1, 6, 12, . . . , 6(r −
1), 6r, 6(r−1), . . . , 12, 6, 1} provides the amount of faces on each layer of the nan-
odisc graph Dr. Note that there is an odd number of 2r+1 layers, and we call the
layer with 6r faces the central layer. For D2 the layer sequence is {1, 6, 12, 6, 1},
for D3 is {1, 6, 12, 18, 12, 6, 1} and for D4 is {1, 6, 12, 18, 24, 18, 12, 6, 1} (see Fig-
ure 3). The auxiliary cycle sequence provides the sizes of the auxiliary cycles
that define the layers {C6, C18, . . . , C12r−6, C12r−6, . . . , C18, C6}. For example, for
D2 the cycle sequence is {C6, C18, C18, C6}, for D3 is {C6, C18, C30, C30, C18, C6},
and for D4 is {C6, C18, C30, C42, C42, C30, C18, C6} (see Figure 3). A nanodisc
graph Dr contains 12r × r vertices and 18r × r edges.

2. Combinatorial Results

The 12 pentagonal faces are distributed in the central layer among its 6r faces
with the other (6r − 12) hexagonal faces. This is the key property of fullerene
nanodiscs [2]. Note that the central layer is defined by two auxiliary cycles,
each of size 12r − 6. The 5 vertices of each pentagon are partitioned such that
3 vertices appear consecutively in one cycle and 2 vertices appear consecu-
tively in the other cycle. We say that two pentagons in the central layer are
partitioned in the same way if each pentagon has 3 vertices in the same cycle
C12r−6. For r ≥ 2, in a Dr, we may have choice to distribute and to partition the
12 pentagonal faces.

Lemma 1
A nanodisc Dr, r ≥ 2, cannot
have two consecutive pentagons
in the central layer partitioned in
the same way.

Figure 4: Two consecutive pentagons
partitioned in the same way.

Observe that there are two ways of partitioning a hexagon in a layer defined
by auxiliary cycles C and C ′. We may place 3 vertices of the hexagon in each
auxiliary cycle to obtain a balanced hexagon, or we may place 4 vertices of the
hexagon in one auxiliary cycle say C and the other 2 vertices are placed in C ′

to obtain an unbalanced hexagon. The following results are obtained through
the rigidity of the construction of the layers of a nanodisc.

Lemma 2
Consider the fullerene nanodisc
Dr, r ≥ 2, and its layers consisting
of 6 hexagons. All the hexagons in
these layers are unbalanced.

Figure 5: Construction of layer consist-
ing of 6 hexagons in a fullerene nan-
odisc Dr, r ≥ 2.

Theorem 1. Lemmas 1 and 2 ensure that D2 shown in Figure 3 is unique.

Lemma 3
In Dr, r ≥ 3, the layers consisting
of 12 hexagons cannot have two
consecutive hexagons partitioned
in the same way.

Figure 6: Construction of layer con-
sisting of 12 hexagons in a fullerene
nanodisc Dr, r ≥ 3.

Lemma 4
The fullerene nanodisc Dr, r ≥
3, cannot have three consecutive
pentagons in the central layer.

Figure 7: Three pentagons ar-
ranged alternately in the central
layer of Dr.

In the central layer of D3, we have 12 pentagons distributed among 6 hexagons.
By Lemma 1, we cannot have two consecutive pentagons partitioned in the
same way. By Lemma 4, we cannot have three consecutive pentagons. So,
among the 6 hexagons, the 12 pentagons must appear in pairs of consecutive
pentagons where each pair is not partitioned in the same way.

Theorem 2. Lemmas 1, 3 and 4 ensure that D3 shown in Figure 3 is unique.

Lemma 5
Consider the fullerene nanodisc
Dr, r ≥ 4, and its layers containing
18 hexagons. Between each pair
of unbalanced hexagons, there is
a pair of consecutive balanced
hexagons.

Figure 8: Construction of layer con-
sisting of 18 hexagons in a fullerene
nanodisc Dr, r ≥ 4.

In the central layer of D4, we have 12 pentagons distributed among 12
hexagons. By Lemma 1, we cannot have two consecutive pentagons parti-
tioned in the same way. By Lemma 5, we cannot have three consecutive pen-
tagons. So, we have two forms to distribute the pentagons and the hexagons:

• The pentagons and the hexagons are distributed alternatingly;
• Among the 12 hexagons, the 12 pentagons in pairs of two consecutive pen-

tagons such that each pair is not partitioned in the same way.

Theorem 3. The two non isomorphic nanodiscs D4 are shown in Figure 9.

In order to describe the number of non isomorphic nanodiscs Dr, we introduce
an auxiliary t parameter, 0 ≤ t ≤ r − 1, defined as the number of hexagons
arranged between the pentagons in the central layer, and denote the nanodisc
by Dr,t (see Figure 9).

Figure 9: The two non isomorphic fullerene nanodiscs D4.
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