ISSN: 2526-1371 @

Performance Analysis of SDN Virtualization
Davi Daniel Gemmer', Augusto Foronda®

'Department of Computer Science
Federal University of Technology - Parand (UTFPR)
Post-Graduation Program in Computer Science

gemmer@alunos.utfpr.edu.br, foronda@utfpr.edu.br

Abstract. Software Defined Network (SDN) is an emerging networking
paradigm to overcame the limitations of a traditional network infrastructure.
SDN can improve the monitoring, management, security and traffic engineering
of a network. A solution for SDN architecture is through Virtual Machine
(VM) and container. However, there is a lack of performance comparison
between VM and container with SDN. This paper analyzes the virtualization
of SDN using VM and Docker container in terms of performance. Simulations
were done with OpenDaylight SDN controller and an evaluation was done to
understand the efficiency and the scalability of the network. The results show
that compared with virtual machines, containers can scale a larger number
of flows. This paper can help the network designers to make a better SDN
architecture in terms of which virtualization method should be used.

Keywords — SDN, Virtual Machine, container, performance.

1. Introduction

Traditional network technology has inherent problems of rigid structure and complex con-
figuration and cannot meet the requirement of network innovation which demands dy-
namic and flexible management. Software Defined Network (SDN) is proposed to over-
came the problems of a traditional network and presents a new idea with three layers: data
plane, control plane and application plane. Data plane is composed by network devices
and forwards packets according to a decision made by the control plane, which acts as a
mediator for the data plane and the application plane and handles the traffic flow in the
network. Application plane achieves customized application, such as network automa-
tion, network management and network security [Joy 2015]. SDN architecture involves
the usage of virtualization technologies such as virtual machines (VMs) and containers.
VMs are extensively used as they permit workloads to be isolated from each other and
for the resources to be well controlled. However, containers have the great advantage
of allowing applications to run separately from the host infrastructure, such as Docker
container. Some papers have shown that Docker container can offer superior performance
compared to VM [Felter et al. 2015]. This paper presents an SDN controller built on VMs
and Docker containers. We perform experiments to evaluate the memory and number of
flows.

This paper is organized as follows: Section II discusses the SDN architecture. In
Section III, we present a comparison between VM and container. Section IV describes
the related work. Section V present experiments and give the results. Finally, Section VI
presents the conclusion of our work.

2. SDN Architecture

Figure 1 shows the SDN architecture. There are 3 layers: data layer, control layer and
application layer. Data layer can communicate with control layer through Southbound
interface and control layer can communicate with application layer through Northbound
interface. Data layer is composed of networking equipment’s which forms the network
infrastructure to forward, modify or drop network traffic according to the instructions
given by controller. Control Layer is composed by the SDN controller, which is a logical
entity that receives instructions from application layer and relays them to the networking
equipment’s. SDN controller manages the network and it has logic control for switching,
routing, firewall security rules, etc. The SDN controller also extracts information about
the network and send it back to the application layer such as statistics and events about
the traffic. Application layer is composed by programs that controls a set of resources of
one or more SDN controllers via application programming interfaces (APIs) [Joy 2015].
Southbound interfaces are APIs that enables the communication between control layer
and data layer. OpenFlow is the first and probably most well-known southbound interface.
However, it is not the only one available. Northbound interfaces enable the communica-
tion between control layer and application layer and it is configured through REST APIs
of SDN controllers, which are used to facilitate automation of the network to align with
the needs of different applications with SDN network programmable [Felter et al. 2015].

Figure 1. SDN Architecture

[NetApp1 | [Net App 2 as Net App 2
ﬁ @ Abstract Network Views ﬁ

/E"\(:Y\‘ s S =
_(g = = Jﬁ// =0y \'\ ..&,TLAVP‘
R g A o Open Northbound API

[Network Abstractions (e.g., Topology Abstraction) J

"/\I\,Th\
%\ 2’?6 Global Network View

—
A . 4

‘ 10pen Southbound API

Control Plane

Data Plane

~ >

Network Infrastructure

Adapted from [Kreutz et al. 2014]

One of the most famous SDN controllers is OpenDayLight (ODL), which provides
a centralized management system that allows to have a programmable network. ODL
controller can be used as a platform for configuring different aspects of the network and
solving different network challenges. ODL uses open source integration standards and
APIs to make the network more programmable, intelligent and adaptable [Bhimani et al.
2017].

® Anais do WPCCG'2019

ISSN: 2526-1371 @

3. Container vs Virtual Machine (VM)

System virtualization separates the underlying physical device and the upper operating
system. A single physical machine can be divided in multiple machines to maximize the
resource utilization and flexibility [Peng et al. 2009].

There are some differences between these two technologies: 1) A container share
the same OS (operating system) on the same machine with other containers and VMs
do not share the OS. Therefore, container is more lightweight than a VM; 2) VM needs
an hypervisor to translate an instruction that can be executed by the host because a VM
runs in a non-privileged mode. On the contrary. A container does require an extra layer
because it communicates with the OS through the system calls; 3) Each VM has its own
image file, while different containers may share some of their images. These differences
shows some advantages of using containers: the size of a container is smaller than the
size of a VM and a container usually takes less hardware resources since it does not need
to maintain an OS [Bedhief et al. 2016].

A container packs together all the necessary software that the application needs
to run with, such as the libraries and the other dependencies. There are some particu-
lar features that enables different containers to run on the same physical machine, such
as Cgroups and namespaces [Morabito 2016]. Cgroup allows system administrators to
allocate resources such as CPU, memory, network to the running containers, which can
be adjusted dynamically. However, it can not use more resources than specified in the
cgroups. Namespace guarantees that processes running in different containers will not
conflict with each other because it provides IDs, network interfaces and host names for
each container [Bedhief et al. 2016].

4. RELATED WORK

Many research efforts have been made to explore the advantages of containers as well
as to compare the containers with the VMs. Some papers have investigated the con-
tainer performance. It was showed that a container running in a Raspberry Pi 2 has al-
most the same performance compared to native execution [Morabito 2016]. Miguel et
al demonstrated that a container technology achieves a very low overhead compared to
native setups. Other papers have compared VMs and containers. A comparison has been
made between Linux containers and virtual machines in terms of the performance and
extensibility [Joy 2015]. Performance analysis has been made of virtual machine (VM)
application and deployments and compares them with the Linux containers [Felter et al.
2015]. Janki et al. [Bhimani et al. 2017] compares the performance of Spark jobs run-
ning in a container cluster and a fix-sized VM cluster with one physical machine. Wes
et al. [Felter et al. 2015] showed a better container performance than VM in terms of
disk and network I/0. And some papers have demonstrated solutions with SDN and con-
tainer. IoT networks and applications are extremely complex and an SDN architecture
with Docker container has been proposed to manage such networks. The experiments
proved the feasibility of the proposed architecture and the communication established
between smart devices through an SDN-based network [Bedhief et al. 2016]. Y. Xu et
al proposed an SDN-based autodocker framework integrated within the switches for en-
abling auto-docking/-undocking of applications at the edge switches. In this manner, the
Docker framework automatically and effectively manages the storage, computing, and

® Anais do WPCCG'2019

networking resources of the switch [Xu et al. 2016]. VMs and containers have been
used in some architectures, such as radio access network (RAN). A. Gopalasingham et al
compared their performance and analyzed the two different architectures. Measurements
and comparisons confirmed that the Docker container based architecture could provide a
superior performance compared to the VM based architecture [Xingtao et al. 2016].

5. PERFORMANCE EVALUATION

Our evaluation considers OpenDayLight SDN controller. The performance metrics con-
sidered are: memory use and average flows. The main goal is to investigate which vir-
tualization method gives the best result with these metrics. The evaluation is carried
out using WCBench [Farrell 2019], a performance measurement tool to benchmark SDN
controllers.

5.1. Test Environment

Both WCBench and ODL controller were implemented on the same machine IBM X3850
M2 with (4x Intel® Xeon™ Processor X7350 CPU @ 2.93GHZ (4cores)), 64 GB of
memory was available. The system was running CentOS 7 x86_64 (1810) and the virtual
machine was virtualized through the ESXi 6.0.0 Update 3. Docker was running with
centos 7 container image, for tests the OpenDaylight Oxygen 0.8.4 controller was used.

5.2. Methodology

WCBench was used to emulate 128 switches and the tests were configured to run a loop
of 2000 cycles with a duration of 4 minutes per cycle. For the execution of the tests, a
total of 16 virtual processors and 60 GB of RAM were allocated for both virtualization
technologies. The table 1 brings the settings used in WCBench.

Table 1. Parameters for WCBench test and ODL config

NUM SWITCHES 128
NUM MACS 100000
TESTS PER SWITCH 10
MS PER TEST 10000
CBENCH WARMUP 1

KARAF SHELL PORT 8101
CONTROLLER OpenDaylight
CONTROLLER IP Iocalhost
CONTROLLER PORT 6633
SSH HOSTNAME cbench
Adapted from [Farrell 2019]

5.3. Average RAM usage

When comparing the results between the two virtualization technologies, it was noticed
that the Docker container had a slightly higher RAM utilization when compared to the
virtual machine, with a difference of 131 MB more for the same experiment as can be
seen in the figure 2 , where the virtual machine used an average of 2224 MB of RAM
and the Docker container had an average of 2355 MB of RAM. WCBench analyzes the
RAM used throughout the operating system, which has caused a problem due to the need
to share host resources for OpenvSwicth (OVS) operation within the Docker container.

ISSN: 2526-1371 @

Consequently the analysis considered the use of host memory during testing while the
hypervisor isolated the VM.

Docker

2500

2400

2300

2200

2100

Used RAM (MB)

S

2000

1800

250 500 750 1000 1250 1500 50 2000
i Number

Virtual Machine

2500

2800

2300

2200

d RAM (MB)

4%

2100

us

2000

1900

Figure 2. Used RAM

5.4. Average Flows per Second

When analyzing the average of transmitted flows, the container Docker obtained an av-
erage of 5,287 flows per second where the virtual machine obtained an average of 4,703
flows per second as can be seen in the figure 3. In the same test the container Docker
obtained a difference of 584 more flows than the virtual machine.

Docker

Average Flows per Second

[] 250 500 750 1000 1250 1500 1750 2000
Run Number

Virtual Machine

Average Flows per Second

Figure 3. Average Flows

® Anais do WPCCG'2019

6. CONCLUSION

This paper presents a comparison performance evaluation of ODL SDN controller using
VM and Docker container. From the performance evaluation, Docker container exhibited
the best throughput results showing that it is able to respond to requests more promptly
under traffic loads. This work provide users with guidelines towards which virtualization
method provides a better performance. The use of RAM was stable and did not obtain
much difference in the two cases but the small advantage of VM led us to believe it was
due to the way WCBench performs RAM analysis.

References

Bedhief, I., Kassar, M., and Aguili, T. (2016). Sdn-based architecture challenging the
iot heterogeneity. In 2016 3rd Smart Cloud Networks & Systems (SCNS), pages 1-3.
IEEE.

Bhimani, J., Yang, Z., Leeser, M., and Mi, N. (2017). Accelerating big data applications
using lightweight virtualization framework on enterprise cloud. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1-7. IEEE.

Farrell, D. (2019). Wcbench. Available in: https://github.com/dfarrell07/
wcbench. Access in June 2019.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE international
symposium on performance analysis of systems and software (ISPASS), pages 171—
172. IEEE.

Joy, A. M. (2015). Performance comparison between linux containers and virtual ma-
chines. In 2015 International Conference on Advances in Computer Engineering and
Applications, pages 342-346. IEEE.

Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., and Uhlig,
S. (2014). Software-defined networking: A comprehensive survey. arXiv preprint
arXiv:1406.0440.

Morabito, R. (2016). A performance evaluation of container technologies on internet of
things devices. In 2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 999—1000. IEEE.

Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., and Li, Q. (2009). Comparison
of several cloud computing platforms. In 2009 Second international symposium on
information science and engineering, pages 23-27. IEEE.

Xingtao, L., Yantao, G., Wei, W., Sanyou, Z., and Jiliang, L. (2016). Network virtual-
ization by using software-defined networking controller based docker. In 2016 IEEE

Information Technology, Networking, Electronic and Automation Control Conference,
pages 1112-1115. IEEE.

Xu, Y., Mahendran, V., and Radhakrishnan, S. (2016). Sdn docker: Enabling applica-
tion auto-docking/undocking in edge switch. In 2016 IEEE conference on computer
communications workshops (INFOCOM WKSHPS), pages 864—869. IEEE.

