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Abstract. Circular arc (CA) bigraphs, a bipartite variation of circular arc
graphs, are bipartite graphs such that, for each of its partite sets, there is a
one-to-one correspondence between its elements and a family of arcs such that
arcs from the opposing families intersect precisely if the corresponding vertices
in the graph are neighbors. In this paper, we present results about different sub-
classes of circular arc bigraphs, including Helly and proper CA bigraphs, as
well as circular convex bipartite (CCB) graphs.
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1. Introduction

A bi-circular-arc model is a triple (C,I,E) such that C' is a circle, and I and E are
families of arcs over C. The corresponding graph of a bi-circular-arc model is con-
structed by creating a corresponding vertex for every arc in I U E, and an edge be-
tween the vertices corresponding to two arcs I € I, E € E precisely if I N E # ()
[Basu et al. 2013, Groshaus et al. 2019]. A bipartite graph is a circular arc (CA) bigraph
if and only if it is the corresponding graph of a bi-circular-arc model. If G is the corre-
sponding graph of a bi-circular-arc model, we say that G admits said model.

A proper CA bigraph is a graph that admits a bi-circular-arc model (C,I,E) in
which [ and E are proper families (i.e. families such that no two elements are properly
contained in one another) [Basu et al. 2013]. For a bipartite graph G = (V, W, E), a bi-
clique is a maximal subset of V' U W that induces a bipartite-complete graph. A Helly
CA bigraph is a graph that admits a bi-circular-arc model (C, I, E) such that, for every bi-
clique K in the graph, there is a point px € C' such that every arc in [UE that corresponds
to a vertex of K contains px. We call a model with that property a Helly bi-circular-arc
model.

Figure 1 contains examples of Helly and Proper CA bigraphs, and their respec-
tive bi-circular-arc models. When representing a model (C, I, [E) graphically, circle C' is
denoted as a dotted circle, and the arcs of I and E are then drawn inside and outside the
circle, respectively.
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Figure 1. A Helly CA bigraph alongside its Helly bi-circular-arc model (left), and
a proper CA bigraph alongside its proper bi-circular-arc model (right). In
the Helly model, the points where the bicliques meet are denoted by a line
segment starting at the circle’s center.

The class of CA bigraphs is a bipartite variation of circular arc graphs [Klee 1969,
Lin and Szwarcfiter 2009], and characterizations for the class and its proper, Helly, and
unit subclasses exist [Basu et al. 2013, Das and Chakraborty 2015, Groshaus et al. 2019].

A bipartite graph G = (V, W, E) is a circular convex bipartite (CCB) graph if V'
(or W) admits a circular order such that, for every vertex w € W (or v € V), the neigh-
borhood of w (or v) is consecutive in the given order [Liang and Blum 1995]. We call
such an order a circular convex bipartite order. The class has been extensively studied for
its computational properties, since many hard computational problems can be solved in
polynomial time within it [Liang and Blum 1995, Liu et al. 2014]. However, the recog-
nition problem for the class, as well as its relationship with CA bigraphs, have not been
extensively studied at the time of this writing. In this paper, we show that CCB graphs are
indeed CA bigraphs.

We call a CCB graph G = (V, W, E) doubly CCB if both V' and W admit CCB
orders.

In this article, we present results on CCB graphs, doubly CCB graphs, and proper
and Helly CA bigraphs, including containment relations and characterizations. Due to
space constraints, we limit ourselves to presenting short ideas of the proofs of every claim,
rather than their full proofs.

Given a vertex v, denote by a(v) the arc corresponding to v in a bi-circular-arc
model, and for any arc A, denote by s(A) and t(A) its counter-clockwise and clockwise
endpoints, respectively. All classes presented remain the same regardless of whether arcs
are considered closed or open, but in order to simplify our proofs, we consider every arc
to be open unless otherwise stated.

2. Results

We start by presenting a characterization of CCB graphs which we use in some proofs.
For that, we introduce what we call arc-point models. An arc-point model is a triple
(C, A, P) such that C'is a circle, A is a family of arcs on C' and P is a set of points in
C'. The corresponding graph of an arc-point model is constructed by creating one vertex
for every arc in A and point in P, and for A € A and p € P, an edge between the
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corresponding vertices of A and p exists precisely if p € A.
Lemma 1. A graph is a CCB graph if and only if it is the corresponding graph of an
arc-point model.

Proof Idea. (<) The clockwise order of the points of P around C' is a circular convex
bipartite order. (=-) For the part that admits a CCB order, distribute points around C'
according to the order. For the opposite part, it is easy to build a family of arcs. U

Applying Lemma 1, we can prove the following theorem.
Theorem 1. Every CCB graph is a CA bigraph.

Proof Idea. By replacing the set P of points in an arc-point model with a family of |P|
sufficiently small arcs in C', we obtain a bi-circular-arc model with the same correspond-
ing graph. Therefore, CCB graphs are CA bigraphs. U

The following is also an important preliminary result. We call vertices with the
same open neighborhood twins, and the twin-free version of a graph the graph that results
from removing one vertex from every pair of twins until no twins remain.

Lemma 2. A graph is a CCB (doubly CCB) graph if and only if its twin-free version is.

In the following theorem, we present a pair of containment relations between CCB
graphs and subclasses of CA bigraphs.
Theorem 2. If G is a Helly or proper CA bigraph, then G is a doubly CCB graph.

Proof Idea. For the Helly case, consider a twin-free graph G that admits a Helly model
(C,L,E). For every vertex v in the part represented by E, there is a biclique K, containing
its closed neighborhood, and since the model is Helly, there is a point Py, € C' contained
in every arc corresponding to elements of K,. Therefore, we can build an arc-point model
(C, I, P) where P contains the points Pk, for every v in the part represented by E.

For the proper case, consider a model (C, I, E), with T and EE proper, correspond-
ing to twin-free graph G. Consider the circular order in which the counter-clockwise
endpoints of I are encountered in a clockwise traversal of the circle. That order is a CCB
order of the part represented by I.

Both classes are doubly CCB, since the proofs can be applied equally to both
partite sets. U

The converse of Theorem 2 is not true, and Figure 2 contains counter-examples
for both cases.

The following result presents a characterization of proper CA bigraphs within the
class of CCB graphs. In a bipartite graph G = (V, W, E), we calla vertex v € V (w € W)
bi-universal if N(v) =W (N(w) = V).
Lemma 3. A bipartite graph G = (V, W, E) without bi-universal vertices is a proper
CA bigraph if and only if V admits a CCB order such that, for every pair of elements
wy, wy € W satisfying N(wy) C N(w,), the intervals of the CCB order corresponding to
the vertices in N (w1) and N (wy) either begin or end in the same vertex.
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Proof Idea. Theorem 3.6 from [Basu et al. 2013] states that a bipartite graph if a proper
CA bigraph if and only if it admits a biadjacency matrix with a monotone circular ar-
rangement (MCA). The order of the columns on a matrix with an MCA is a CCB order
with the properties stated in the lemma.

Conversely, if a graph admits a CCB order with the properties stated in the lemma,
it is easy to show that there exists a biadjacency matrix with an MCA such that the order
of columns is given by the CCB order. 0

We close our results section presenting a containment relation between a subclass
of Helly CA bigraphs and proper CA bigraphs. A bipartite graph is bichordal if it does
not contain an induced cycle of order greater than 4. The following characterization,
presented without proof due to space constraints, is applied in the containment relation.
Lemma 4. Consider graph G, with V(G) being partitioned in the following subsets, for
k>6,n1,..,n,>0:

C= {Cl,CQ,...,Ck}.
V ={uvy,v9, ..., v }.
Wi =A{w;1,...,win}foralll <i<k.
X ={wi1, s Tin, } forall 1 <i <k

Let the neighborhoods of the vertices in V (G) be the following, for all 1 < i < k.
Consider cyclic summation (e.g. 1 — 1 =k, k + 1 = 1) for vertex and set indices:
N(¢) = {cim1, cipr, v} UW, U X, .

N(vi) = {ci}.
N(w; ;) ={ctU{zy € Xi|l <j}, foralll < j <n,.
N(z;;) = {civ1} U{wy € Will > j}, foralll < j <n,.

A bipartite graph that is not bichordal is a Helly CA bigraph if and only if its
twin-free version is an induced subgraph of G, for certain values of k,nq, ..., n.
Theorem 3. If G is a Helly CA bigraph that is not bichordal, then G is a proper CA

bigraph.

Proof Idea. 1t suffices to prove that graph GG from Lemma 4 is a proper CA bigraph.

Note that G has no bi-universal vertices, so we can apply Lemma 3 to prove that
G is a proper CA bigraph.
The partite sets of GG are the following:

k k—1

1=2,i+2 i=1,142
k k—1
.Y:CQU‘/]_U U XZ'U U I/VZ
1=2,142 1=1,i42

Consider, then, the following circular ordering of X:

(Cl7 xl,l: (RS xl,nuv% w2,17 ceey w2,n27 C3y ...
ey Cp—1, zk_u, ceey xk—lmk—m Uk, wk71, cees wk)nk)
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The above order, in simple terms, is built as follows: for every ¢ (starting at ¢ =
1), add vertex ¢;, followed by the elements of X; in ascending order, followed by v, 1,
followed by W, in ascending order, and then the loop restarts with ¢ + 2 until 7 > k.

Note that the presented order is a CCB order. Furthermore, the only proper con-
tainments between neighborhoods of Y are the following, for i < k, 11,1y < n;:

Between pairs of the form z;;,, z;,.

Between pairs of the form w; ;,, w; ,.

Between vertices of IW; and ¢;. .

Between vertices of X, and ¢;.

Between v; and any vertex from W;, X; 1, or {¢;_1, ¢iv1}-

In the given CCB order of X, all pairs listed above are such that the intervals
containing their neighborhoods have an endpoint in common. Therefore, GG is a proper
CA bigraph.

Note that, if a graph is a proper CA bigraph, the addition of twins to it makes it
remain a proper CA bigraph. To add a twin arc to a family without creating proper con-
tainments, just copy the original arc and shift the endpoints a significantly small amount.
Therefore, we conclude that every Helly CA bigraph that is not bichordal is a proper CA
bigraph. U

Figure 2 is a Venn diagram of the classes mentioned in the paper. The regions
marked as CAB, CCB, and D-CCB represent, respectively, CA bigraphs, CCB graphs and
doubly CCB graphs, while the regions marked as P, H and NBH represent proper and
Helly CA bigraphs, and Helly CA bigraphs that are not bichordal, respecetively.

3. Conclusion

We presented a characterization of circular convex bipartite graphs using the concept of
arc-point models. We showed that doubly CCB graphs, a proper subclass of circular
convex bipartite graphs, are a proper superclass of both Helly and proper circular arc bi-
graphs. We also showed a result that proves that non-bichordal Helly circular arc bigraphs
are a proper subclass of proper circular arc bigraphs, and presented a characterization of
proper CA bigraphs without bi-universal vertices within the class of CCB graphs.

Future work includes searching for recognition algorithms for circular convex bi-
partite graphs, and studying other potential characterizations of proper and Helly CA
bigraphs with relation to the class of CCB graphs.
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Figure 2. A Venn diagram of the classes mentioned in the paper, with an example
graph in each region.
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