
A Middleware for Using PIC Microcontrollers and Jason
Framework for Programming Multi-Agent Systems

João Victor Guinelli
Centro Federal de Educação Tecnológica Celso
Suckow da Fonseca - Campus Nova Friburgo

Av. Gov. Roberto Silveira 1900
Nova Friburgo-RJ, Brasil

CEP 28.635-000
joao.silva@cefet-rj.br

Carlos Eduardo Pantoja
Centro Federal de Educação Tecnológica Celso
Suckow da Fonseca - Campus Maria da Graça

Rua Miguel Ângelo 96 -
Maria da Graça-RJ, Brasil

CEP 20.785-220
pantoja@cefet-rj.br

ABSTRACT
This paper presents a middleware using PIC microcontrol-
lers for programming robotic agents controlled by a Multi-
Agent Systems alongside with Jason Framework. The mid-
dleware is a hardware side library developed in C for PIC
and is based on the Javino protocol. The proposed mid-
dlewarel allows a communication between hardware and soft-
ware and aims to be used together with Javino for software
side. A simple example is presented to show the basic func-
tioning of a robot architecture using the middleware.

Keywords
Middleware; Multi-Agent Systems; Robotics

1. INTRODUCTION
Nowadays, a robot can be understood as an intelligent

agent, which is able to perceive, reason and act into a real
environment [7]. Similarly, agents can be defined as vir-
tual or physical entities that are capable of perceiving or
acting into an environment, where they can be situated.
So, in robotics it is reasonable to use Multi-agent Systems
(MAS) approach and agent-oriented programming langua-
ges. Furthermore, MAS approach can be used for complex
and distributed problems.

However, embedding BDI agents in robotics is not a tri-
vial task since their reasoning cycle can generate undesira-
ble delays into the robot execution in real environments [8].
Some works tries to embed MAS in platforms using BDI fra-
meworks such as [1] and [4]. In [1] it is proposed a robotic
platform that moves from one point to another based on the
GPS position. The prototype uses the JASON framework
[3] but the reasoning agent is not embedded in the robot
vehicle. On the other hand, [4] extends the Jason in order
to control Lego robots that are able to follow lines on the
floor and avoid obstacles. However, the extension does not
allow embedding MAS because Lego platform does not have
sufficient space for a MAS system.

In [5] it is presented a middleware that is responsible for
helping the communication between low-level hardware and
high-level programming languages and it is used alongside
with Jason for programming embedded MAS. However, the
Javino middleware is dedicated only to ATMEGA microcon-
trollers. Therefore, the objective of this paper is to present
the Javic middleware for communication between PIC mi-
crocontrollers and the Jason framework. The Javic uses a

library developed for the PIC side and it the JAVA side li-
brary of Javino. This middleware aims to provide the usage
of PIC microcontrollers in embedded MAS since PIC is one
of the most used microcontrollers in industry and automa-
tion applications.

This paper is structured as follows: section 6 analyzes
some related works; section 3 presents the robotic-agent ar-
chitecture; in section 4 the Javic middleware is explained;
section 5 shows how to embed Jason and use Javic mid-
dleware to communicate with PIC microcontrollers; in sec-
tion 6 a case study is presented; and the section 7 presents
the conclusions and future works.

2. RELATED WORK
In this section it is discussed some related works, which

also make use of multi-agent programming languages to con-
trol robotic platforms. In [1], the authors propose an in-
tegration between Jason and Arduino in order to control
grounded-vehicles. To implement the communication between
the Arduino board and Jason’s, the authors used the RxTx
library. Using that approach, it is possible to use Jason to
operate any kind of vehicle, however, Jason is not truly em-
bed since it is running in a external computer that communi-
cates itself with the vehicle through transmitters and recei-
vers. Besides that, no protocol is used to perform the com-
munication between the software and hardware-side, what
can cause failures on the system since data loss and inter-
ferences are not handled. Differently, this work can truly
embed Jason in a Raspberry board, and we use Javic, that
implements the same protocol implemented by Javino, to
perform the communication between the software and the
hardware-side.

In [4] the author extend Jason framework, through the im-
plementation of internal actions, to make possible the com-
munication between physical agents and the Lego Minds-
torm NXT toolkit. That communication is performed using
Bluetooth and LeJOS as the middleware between Jason and
Lego. However, according to the author, this communica-
tion is kind of slow, and and the robotic platform is tied
to Lego Mindstorm NXT. On the other hand, the agent-
robotic architecture presented in this paper can be used in
any robotic platform that uses Java-based languages in the
software-side, and ATMEGA or PIC microcontrolers in the
hardware-side.

3. ROBOTIC-AGENT ARCHITECTURE

The development of the Javic middleware was motivated
mainly by its possible application in robotic-agents using
embedded MAS, which can be able to control different de-
vices connected to different microcontrollers. In fact, Javic
allows the design of robotic-agents using PIC microcontrol-
lers while Javino uses the ATMEGA microcontrollers. Des-
pite of the possibility of a selection between these microcon-
trollers, both hardware-side libraries communicate with the
same software-side library, allowing the usage of both mi-
crocontrollers into the same robot. In order to clarify this
approach, we propose a robotic-agent architecture for using
along with any microcontroller or agent-oriented program-
ming language with components adherent to the protocol
implemented by Javino and Javic.

A robotic-agent designed using the proposed architecture
contains microcontrollers of different types, each of them
controlling sensors and actuators, and a central core respon-
sible for the reasoning, based on information perceived by
sensors, and it is able of controlling actuators. For inter-
connecting the hardware and the software of the robot, it is
necessary to use middleware.

In Figure 1, it is possible to see the architecture of a ro-
bot using different microcontrollers, such as PIC, ATMEGA,
INTEL or any other, as long as this hardware uses a mid-
dleware compliant to the same protocol used in Javino and
Javic when communicating. For each microcontroller there
are several actuators and sensors connected. The hardware-
side libraries used are Javic for PIC and Javino for AT-
MEGA. However the architecture is extensible, so it is pos-
sible to implement a hardware-side library for INTEL8051
for example (named Javintel) or any other library for other
microcontroller.

Figure 1: A robotic agent architecture using Javino
and Javic middleware.

In the context of software-agents, the core of the robot ne-
eds to execute an application programed in Java or any other
framework based on that language, such as MAS in Jason
or JADE [2]. However, if another programming language
or framework were employed, it is necessary to develop the
software-side of the protocol of Javino. The Javino software-

side library is responsible for gathering all the perceptions
from the microcontrollers and, after that, these perceptions
has to be processed as beliefs depending on the MAS fra-
mework chosen. Based on the beliefs processing, the MAS
can control the actuators through Javino library, which com-
municates with the microcontroller sending the actions to be
performed in real world.

Therefore, depending on the strategy chosen for the im-
plementation of MAS, the agent may exchange information
with only one microcontroller at time or be programmed to
gathers all perceptions and process them all together. This
means that, for example, importing Javino into the Jason’s
reasoning cycle, when the agent is perceiving the real world
environment, it will catch only the perceptions that came
from the microcontroller (in the serial port set on Javino)
that is being used in that moment. The same thing occurs
when it is necessary to manipulate an actuator, the agent
only has access to the microcontroller connected to the selec-
ted in Javino in that moment, but the agent can use Javino
at real time to change the port where it is communicating.

4. JAVIC MIDDLEWARE
The Javic is a middleware that implements the same pro-

tocol as Javino in order to allow a communication using the
serial port between a software in Java and PIC microcontrol-
lers. The Javic middleware is composed of a library for PIC
(hardware-side) and another one for Java (software-side).

For this, it was developed a library for PIC devices, which
uses the C language. Depending on the type of the PIC, the
amount of available memory can interfere on the functioning
of this version of the library. The library was developed to
work in PIC with at least 256 bytes of RAM memory because
the size of the message is up to 256 bytes. It is possible to use
the PIC 18F, 24F, 30F and 33F without restrictions. The
PIC from family 16F should have at least 256 bytes of RAM
and for family 12F it is not possible to use this version of
Javic (however a version with a short version of Javic could
be implemented if it is desirable). Table 1 shows a summary
of PIC specifications.

Table 1: Amount of available memory of PIC fami-
lies

Devices RAM (bytes) ROM (bytes)
12FXXX 64 – 128 256
16FXXX 128 – 256 256
18FXXX 256 – 512 256
24FXXX 24K – 96K –
30FXXX 512 – 8K 1024 – 4092
33FXXX 8K – 30K –

As the Javic is an implementation of the protocol for
hardware-side, in order to maintain a pattern between the
previous existent implementation and possible next ones, the
methods presents in the Javic are the same present in the
Javino for ATMEGA microcontrollers.

In the software-side of the middleware, it is used the Ja-
vino library for Java since it is not bound to the type of the
microcontroller. It uses serial communication for exchan-
ging messages. Then, when the hardware-side library sends
a message (using PIC or ATMEGA), the software-side li-
brary receives and verifies the correctness of the content. If
there is no data loss during the transmission, the message

is delivered. When the software-side library needs to send a
message to the other side, it is necessary to inform the port
where the target device is connected (it is not possible to
send the same message for all the devices at the same time).

With the development of the Javic, nowadays there is tree
libraries that implement the Javino protocol: one for the
software-side that uses the Java language, and others two
for the hardware-side, one for ATMEGA, and another one
for PIC microcontrollers.

5. EMBEDDING JASON + JAVIC
For embedding any MAS in robots, it is necessary to pro-

gram and interfere in different abstraction layers using se-
veral hardware (sensors, actuators, microcontrollers, boards
and operational systems) and software (middleware and pro-
gramming languages). These layers should be independent
depending of the robot architecture and project. The mo-
dularity of the layers provides a maintainable and scalable
architecture with high cohesion and low coupling. Besides,
it should provide a fault tolerance mechanism for avoiding a
total block of the MAS in case of malfunctioning of a com-
ponent in real time constraints.

For using Jason and Javino, or Javic, for embedding MAS
into any robotic platform (Figure 3), it is necessary to in-
terfere in four layers accordingly to [5]:

1. Hardware. Firstly, this layer represents the physical
robot, where all the components are interconnected.
The sensors and actuators are plugged on the micro-
controllers that are connected on serial ports of the
selected board. The board should be able to host an
operational system where the MAS will run. The se-
lected board was the Raspberry Pi. Therefore, the
operational system of the selected board was adapted
to automatically run the MAS as soon as it starts;

2. Microcontroller. The microcontroller is responsi-
ble for controlling the sensing and acting into the real
world. In this layer, all desirable actions should be
programmed as procedures that are called in return of
received serial messages. Besides, the perceptions has
to be sent through serial port. The microcontroller
used was the PIC 18F4520;

3. Middleware. The middleware is responsible for ex-
changing the messages between the microcontroller layer
and the agent layer. For this, the middleware should be
imported in both layers (microcontroller and agent).
Javino and Javic were used as the middleware, Javino
in the software-side and Javic in the hardware-side.

4. Agent. In this layer, the MAS is programmed. The
agent-oriented programming language used is Jason,
where in the simulated environment the Javino library
is responsible for exchanging messages with the micro-
controller.

6. PRELIMINARY TEST
In order to test the proposed architecture, we present a

basic test using Javic. We will use Jason Framework to deve-
lop the MAS because it is based on BDI, which is a cognitive
model is responsible for the reasoning of the system. Our
purpose with this section is to prove that the architecture

can work properly using the middleware for communicating
with a MAS. So, we live for further work a performance
analysis and tests in a complex scenario.

Here, we show an example using PIC 18F4520 connected
to an ultrasonic sensor and a led as actuator. We choose
this PIC version because of the amount of memory availa-
ble for mounting Javic’s messages. In this case, the agent
should turn on the light when it realizes that an obstacle is
approaching. In this example, the PIC microcontroller was
programmed based on methods that can be activated when
a serial message arrive from an agent. The same occurs for
the perceptions, once the agent requests them based on its
needs. However, it is possible to program the microcontrol-
lers to send the perceptions from time to time. The program
code of the microcontrollers can be seen as follows (we use
C to represent the PIC program code):

1 whi le (t rue) {
2 rece ivedMessage = j a v i c . getMsg () ;
3 i f (rece ivedMessage=”getPercept s ”)
4 getPercepts () ;
5

6 i f (rece ivedMessage=”turnOn ”)
7 turnOn () ;
8

9 i f (rece ivedMessage=”turnOff ”)
10 turnOff () ;
11 }
12

13 void getPercept s () {
14 // code f o r g e t t i n g the d i s t ance from

u l t r a s o n i c s e n s o r s
15 }
16

17 void turnOn () {
18 // code f o r turn ing on the l ed
19 }
20

21 void turnOff () {
22 // code f o r turn ing o f f the l ed
23 }

In Jason, we optioned to use the simulated environment
in Java to provide the external actions to be performed by
the agent in real world (using actuators) and the perceptions
processing from the microcontrollers. The environment code
can be seen as follows:

1 i f (a c t i on . t oS t r i ng () . equa l s (” r e f r e s h ”)) {
2 t h i s . j av ino . port = ”COM8” ;
3 t h i s . j av ino . sendMsg (”getPercept s ”) ;
4 i f (t h i s . jBr idge . ava i lab lemsg ()) {
5 t h i s . msg = ” d i s t (pic , ” + t h i s . j av ino .

getmsg () + ”) ” ;
6 addPercept (L i t e r a l . p a r s e L i t e r a l (t h i s .

msg) ;
7 }
8 }
9

10 i f (a c t i on . t oS t r i ng () . equa l s (”l ightOnPic ”)) {
11 t h i s . j av ino . port = ”COM8” ;
12 t h i s . j av ino . sendmsg (”turnOn ”) ;
13 }
14

15 i f (a c t i on . t oS t r i ng () . equa l s (” l i g h t O f f P i c ”))
{

16 t h i s . j av ino . port = ”COM8” ;
17 t h i s . j av ino . sendmsg (”turnOff ”) ;
18 }

The agent uses Jason’s external actions to get perceptions
and to activate the actuators. The external action activates
the software side of the middleware that sends a serial mes-
sage to the PIC microcontroller which get the perceptions
or execute an action. The agent code can be seen as follows:

1 +!moving : d i s t (pic , X) & value (20) & X>J <−
2 r e f r e s h ;
3 l i g h t O f f P i c ;
4 ! moving .
5

6 +!moving : d i s t (pic , X) & value (20) & X<=J
<−

7 r e f r e s h ;
8 l ightOnPic ;
9 ! moving .

7. CONCLUSIONS
This paper presented the Javic middleware, which imple-

ments the same protocol as Javino and allow the commu-
nication between Java-based languages and PIC microcon-
trolers. For future works, we will develop a tiny version of
Javic for PIC with RAM memory below 256 bytes, reducing
the length of the message in the protocol to 128 bytes. Be-
sides, we will also provide a library for Javintel middleware,
in order to provide a communication between INTEL8051
microcontrollers and the Java language. Then, the architec-
ture will provide a selection among several microcontrollers
used at industry.

The use of embedded MAS in real-time scenarios arises
several performance issues as the time of processing percep-
tions and the response time that the robotic should proper
act. So, the architecture should be analyzed in a complex
scenario case study with real-time constraints. We also in-
tend to use ARGO [5] for testing the Javic middleware in
embedded scenarios.

8. REFERENCES
[1] R. S. Barros, V. H. Heringer, C. E. Pantoja, N. M.

Lazarin, and L. M. de Moraes. An agent-oriented
ground vehicle’s automation using jason framework. In
ICAART (2), pages 261–266, 2014.

[2] F. Bellifemine, G. Caire, and D. Greenwood.
Developing multi-agent systems with JADE. Wiley
series in agent technology. John Wiley, 2007.

[3] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming multi-agent systems in AgentSpeak using
Jason, volume 8. John Wiley & Sons, 2007.

[4] A. S. Jensen. Implementing lego agents using jason.
arXiv preprint arXiv:1010.0150, 2010.

[5] N. M. Lazarin and C. E. Pantoja. A robotic-agent
platform for embedding software agents using raspberry
pi and arduino boards. 9th Software Agents,
Environments and Applications School, 2015.

[6] C. E. Pantoja, M. F. Stabile Jr, N. M. Lazarin, and
J. S. Sichman. Argo: A customized jason architecture
for programming embedded robotic agents. Third
International Workshop on Engineering Multi-Agent
Systems (EMAS 2016), 2016.

[7] S. Russel and P. Norvig. Inteligência artificial. Editora
Campus, page 26, 2004.

[8] F. R. Santos and J. Hubner. Avaliação do uso de
agentes no desenvolvimento de aplicações com véıculos
aéreos não-tripulados. 2015.

