Coloração de arestas AVD em grafos split completo e split-indiferença Introdução

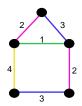
Sheila Morais de Almeida Thamirys dos Santos Rauch

DAINF-UTFPR-PG

outubro - 2017

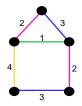
Coloração de arestas própria

É uma atribuição de cores para as arestas de um grafo de forma que arestas incidentes no mesmo vértice tenham cores distintas.



Problema da Coloração de Arestas

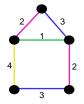
Dado um grafo G, quantas cores são necessárias para uma coloração de arestas própria em G?



4 é o menor número possível de cores?

Problema da Coloração de Arestas

Dado um grafo G, quantas cores são necessárias para uma coloração de arestas própria em G?

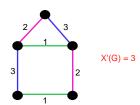


Precisa de pelo menos $\Delta(G)$ cores.

 $\Delta(G)$: maior grau de um vértice de G.

Problema da Coloração de Arestas

Dado um grafo G, quantas cores são necessárias para uma coloração de arestas própria em G?



Índice cromático

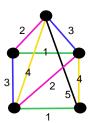
O menor número de cores é o índice cromático, $\chi'(G)$.

Por definição, $\chi'(G) \geq \Delta(G)$

Grafo sobrecarregado

Um grafo é sobrecarregado se $|E(G)| > \Delta(G) \lfloor \frac{|V(G)|}{2} \rfloor$.

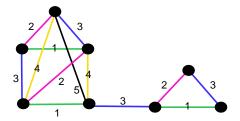
Para grafos sobrecarregados, $\chi'(G) = \Delta(G) + 1$.



Grafo subgrafo-sobrecarregado

Um grafo G é subgrafo-sobrecarregado se contém um subgrafo H com $\Delta(H)=\Delta(G)$ e H é obrecarragado.

Grafos subgrafo-sobrecarregados têm $\chi'(G) = \Delta(G) + 1$.

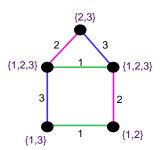


Conjunto de Cores

Conjunto se cores de um vértice

Considere um grafo G com uma coloração própria das arestas e um vértice $v \in V(G)$.

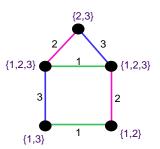
O conjunto de cores de v é o conjuntos das cores das arestas que incidem em v, denotado por C(v).



Coloração de arestas AVD

É uma coloração de arestas própria onde $C(u) \neq C(v)$ para quaisquer dois vértices adjacentes $u \in v$.

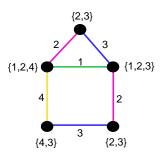
Observação: Coloração de arestas AVD, do inglês *Adjacent Vertex Distinguishing edge coloring*.



Coloração de arestas AVD

É uma coloração de arestas própria onde $C(u) \neq C(v)$ para quaisquer dois vértices adjacentes $u \in v$.

Observação: Coloração de arestas AVD, do inglês *Adjacent Vertex Distinguishing edge coloring*.

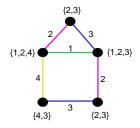


Problema da Coloração de Arestas AVD

Problema da Coloração de Arestas AVD

Dado um grafo G, qual o menor número de cores que permite uma coloração de arestas AVD para G?

Esse número é chamado de *índice cromático AVD* e denotado por $\chi_a'(G)$.



No exemplo, $\chi'_{a}(G) = 4$.

Problema da Coloração de Arestas AVD

Z. ZHANG, L. LIU e J. WANG. *Adjacent strong edge coloring of graphs*. **Applied mathematics letters**, 15(5):623 - 626, 2002.

- Introduziram o problema e apresentaram os primeiros resultados: árvores, ciclos, completos e bipartidos completos.
- Conjectura: Se G é um grafo conexo e $|V(G)| \ge 6$, então $\chi_a'(G) \le \Delta(G) + 2$.

Problema da Coloração de Arestas AVD

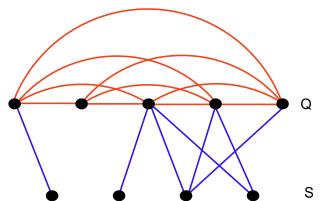
A. M. VILAS-BÔAS. *Coloração de arestas semiforte de grafos split*. **Dissertação de Mestrado**, Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP, 2015.

• Provaram que a Conjectura de Zhang et al. é verdadeira para grafos split completos e split-indiferença.

Grafos split

Grafo split

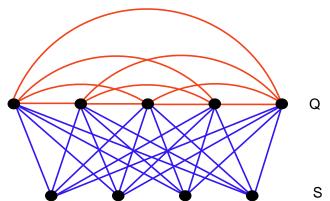
Um grafo é split se seu conjunto de vértices pode ser particionado em uma clique e um conjunto independente.



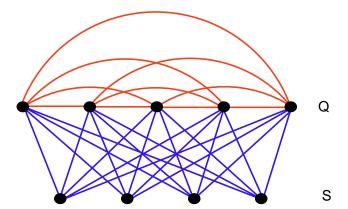
Grafos split completo

Grafo split completo

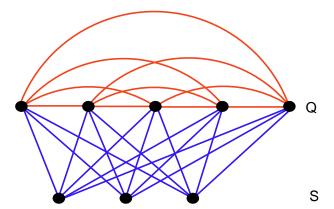
Um grafo é split completo se existe aresta de cada vértice da clique com todos os vértices do conjunto independente.



Teorema (Vilas-Bôas) Seja G = [Q,S] um grafo split completo com $|Q| \geq 2$. Se $\Delta(G)$ é par ou $|Q| \leq |S|^2 - |S|$, então $\chi_a'(G) = \Delta(G) + 1$. Se $\Delta(G)$ é ímpar e $|Q| > |S|^2$, então $\chi_a'(G) = \Delta(G) + 2$.



Teorema (Vilas-Bôas) Seja G=[Q,S] um grafo split completo com $|Q|\geq 2$. Se $\Delta(G)$ é par ou $|Q|\leq |S|^2-|S|$, então $\chi_a'(G)=\Delta(G)+1$. Se $\Delta(G)$ é ímpar e $|Q|>|S|^2$, então $\chi_a'(G)=\Delta(G)+2$.

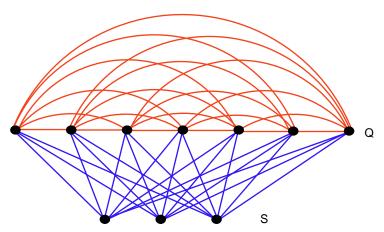


Teorema (Vilas-Bôas) Seja G = [Q, S] um grafo split completo com $|Q| \geq 2$. If $\Delta(G)$ é par ou $|Q| \leq |S|^2 - |S|$, então $\chi_a'(G) = \Delta(G) + 1$. Se $\Delta(G)$ é ímpar e $|Q| > |S|^2$, então $\chi_a'(G) = \Delta(G) + 2$.

Faltava resolver: $\Delta(G)$ impar e $|S|^2 - |S| < |Q| \le |S|^2$.

Faltava resolver: $\Delta(G)$ impar e $|S|^2 - |S| < |Q| \le |S|^2$.

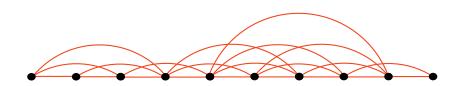
Conjecturou-se que esses grafos sempre têm $\chi_a'(G) = \Delta(G) + 1$.



Grafos indiferença

Grafo indiferença

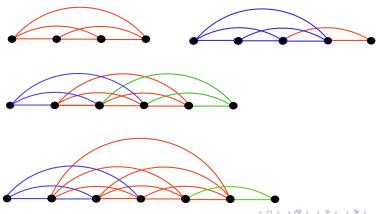
Um grafo é indiferença se seus vértices podem ser linearmente ordenados de forma que vértices pertencentes à mesma clique são comsecutivos nessa ordem.



Grafos split-indiferença

Grafo split-indiferença

Um grafo é split-indiferença se pertence às duas classes: é split e indiferença.

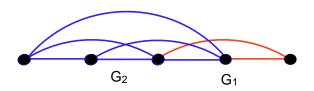


Se o split-indiferença é um grafo completo:

Teorema (Zhang et al.) Se K_n é um grafo completo com n vértices, então

$$\chi_a'(K_n) = \left\{ egin{array}{ll} \Delta(K_n) + 1, & ext{se } n ext{ \'e impar;} \\ \Delta(K_n) + 2, & ext{se } n ext{ \'e par.} \end{array}
ight.$$

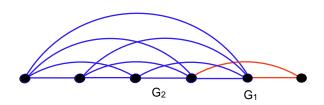
Grafos split-indiferença



G é a união de dois grafos completos G_1 e G_2 em que $G_1 \setminus G_2 = K_1$.

Teorema (Vilas-Bôas) Se |V(G)| é ímpar, então

$$\chi_{\mathsf{a}}'(G) = \left\{ \begin{array}{ll} \Delta(G), & \text{se existe um unico v\'ertice com grau } \Delta(G); \\ \Delta(G) + 1, & \text{se h\'a pelo menos dois v\'ertices com grau } \Delta(G). \end{array} \right.$$



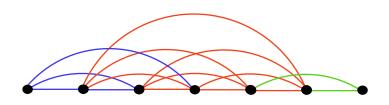
Seja G, um grafo split-indiferença que é a união de dois grafos completos G_1 e G_2 , $G_1 \setminus G_2 = K_1$.

Teorema (Vilas-Bôas) Se |V(G)| é par, então

$$\chi_{\text{a}}'(G) = \left\{ \begin{array}{ll} \Delta(G), & \text{se } |G_1 \cap G_2| = 1; \\ \Delta(G) + 1, & \text{se } 2 \leq |G_1 \cap G_2| \leq \frac{3\Delta(G) + 1}{4}; \\ \Delta(G) + 2, & \text{se } |G_1 \cap G_2| > \frac{3\Delta(G) + 1}{4}. \end{array} \right.$$

Teorema (Vilas-Bôas) Se G é um grafo split-indiferença que é a união de três grafos completos G_1 , G_2 e G_3 , tal que $G_1 \setminus G_2 = K_1$, $G_2 \setminus G_3 = K_1$ e $V(G_1) \cap V(G_2) \neq \emptyset$, então

$$\chi_{a}'(G) = \left\{ \begin{array}{ll} \Delta(G), & \text{se um unico v\'ertice tem grau } \Delta(G); \\ \Delta(G)+1, & \text{se mais que } \frac{3\Delta(G)+1}{4} \text{ v\'ertices t\'em grau } \Delta(G); \\ \Delta(G)+2, & \text{caso contr\'ario.} \end{array} \right.$$



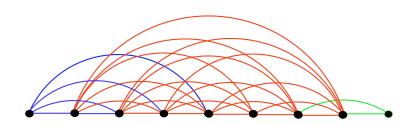
Teorema (Vilas-Bôas) Se G é um grafo split-indiferença que é a união de três grafos completos G_1 , G_2 e G_3 , tal que $G_1 \setminus G_2 = K_1$, $G_2 \setminus G_3 = K_1$ e $V(G_1) \cap V(G_2) = \emptyset$, então

$$\chi_{\mathsf{a}}'(G) = \left\{ \begin{array}{l} \Delta(G) + 1, \quad \text{se } |V(G)| \text{ \'e par ou se } |G_1 \cap G_2| \leq \frac{\Delta(G) + 1}{2}; \\ \Delta(G) + 2, \quad \text{se } |V(G)| \text{ \'e \'impar e } |G_1 \cap G_2| \geq \frac{3\Delta(G) + 1}{4}; \end{array} \right.$$

Falta:
$$|V(G)|$$
 é ímpar e $\frac{\Delta(G)+1}{2}<|G_1\cap G_2|<\frac{3\Delta(G)+1}{4}$.

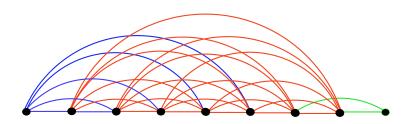
Grafos split-indiferença

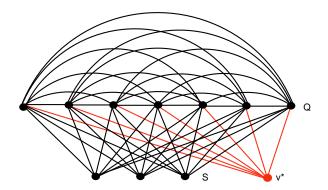
Teorema (Vilas-Bôas e Mello) Seja G é um grafo split-indiferença sem vértice universal. Se |V(G)| é ímpar, $|V(G_1) \cap V(G_2)| = (\Delta(G)+1)/2+p$, $|V(G_2) \setminus (V(G_1) \cup V(G_3))| \geq p$, $p \in \mathbb{Z}$, $0 \leq p < \frac{\Delta(G)-1}{4}$ e $|V(G_1) \cap V(G_2)| \geq |V(G_2) \cap V(G_3)|$, então $\chi_a'(G) = \Delta(G)+1$.



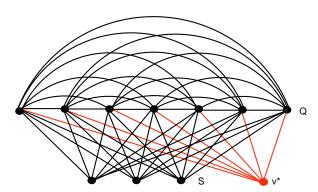
Grafos split-indiferença

Nesse trabalho: G é um grafo split-indiferença sem vértice universal. Se |V(G)| é ímpar, $|V(G_1) \cap V(G_2)| = (\Delta(G)+1)/2+p$, $|V(G_2) \setminus (V(G_1) \cup V(G_3))| < p$, $p \in \mathbb{Z}$, $0 \le p < \frac{\Delta(G)-1}{4}$ e $|V(G_1) \cap V(G_2)| \ge |V(G_2) \cap V(G_3)|$, então $\chi_a'(G) = \Delta(G)+2$.





Teorema Seja G=[Q,S] um grafo split completo com $\Delta(G)$ ímpar e $|S^2|-|S|<|Q|\leq |S^2|$. Se G^* é o grafo obtido de G pela adição de um vértice v^* adjacente a todos os vértices de Q, então G^* não é sobrecarregado.



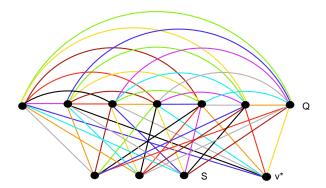
Lema Seja G = [Q, S] um grafo split completo com $\Delta(G)$ ímpar e $|S^2| - |S| < |Q| \le |S^2|$. Se G^* é o grafo obtido de G pela adição de um vértice v^* adjacente a todos os vértices de Q, então G^* não é sobrecarregado.

B-L. CHEN, H-L. FU e M. T. KO. *Total chromatic number and chromatic index of split graphs.* **J. Combin. Maths. Combin. Comp.**, 17:137 - 146, 1995.

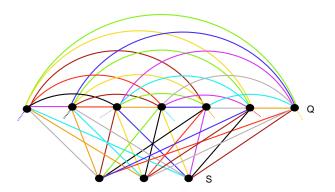
Teorema (Chen, Fu e Ko, 1985) Seja G um grafo split completo. Então $\chi'(G) = \Delta(G)$ se, e somente se, G não é sobrecarregado.

No nosso caso, G^* não é sobrecarregado.

Pintamos G^* com $\Delta(G^*) = \Delta(G) + 1$ cores.



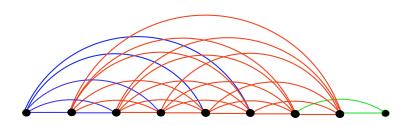
Removemos v^* e obtemos uma coloração de arestas do split completo com $\Delta(G)+1$ cores.



Cores faltantes na clique são duas a duas distintas: a coloração de arestas é distinta na vizinhança.

Teorema Seja G, um grafo split-indiferença sem vértice universal. Se |V(G)| é ímpar, $|V(G_1) \cap V(G_2)| = (\Delta(G)+1)/2 + p$, $|V(G_2) \setminus (V(G_1) \cup V(G_3))| < p$, $p \in \mathbb{Z}$, $0 \le p < \frac{\Delta(G)-1}{4}$ e $|V(G_1) \cap V(G_2)| \ge |V(G_2) \cap V(G_3)|$, então $\chi_a'(G) = \Delta(G) + 2$.

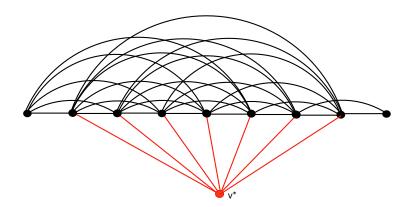
Construa G^* com a adição de um vértice v^* adjacente a todo vértice com grau máximo em G.



Construa G^* com a adição de um vértice v^* adjacente a todo vértice com grau máximo em G.

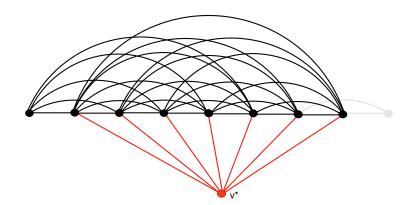


Observe que
$$\Delta(G) = |Q|$$
, $\Delta(G^*) = |Q| + 1$.



Considere o subgrafo induzido $H = G^*[V(G_1) \cup V(G_2) \cup \{v^*\}].$

$$\Delta(H) = \Delta(G^*).$$

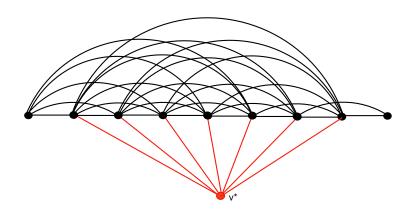


Lema: O subgrafo $H = G^*[V(G_1) \cup V(G_2) \cup \{v^*\}]$ é sobrecarregado.

Conclusão: G^* é subgrafo-sobrecarregado.

Não existe coloração de arestas para G^* com $\Delta(G^*) = \Delta(G) + 1$ cores.

Então, não existe coloração de arestas de G com $\Delta(G)+1$ cores tal que os conjuntos de cores dos vértices de grau máximo sejam dois a dois distintos.



Concluímos:
$$\chi'_a(G) \ge \Delta(G) + 2$$

Vilas-Bôas e Mello provaram que esses grafos tem $\chi_a'(G) \leq \Delta(G) + 2$.

Então,
$$\chi_a'(G) = \Delta(G) + 2$$
.

Conclusão

Se
$$G$$
 é um split completo com $\Delta(G)$ ímpar e $|S|^2-|S|<|Q|\leq |S|^2$, então $\chi_a'(G)=\Delta(G)+1$

Se G é um grafo split-indiferença sem vértice universal, |V(G)| é ímpar, $|V(G_1) \cap V(G_2)| = (\Delta(G)+1)/2 + p$, $|V(G_2) \setminus (V(G_1) \cup V(G_3))| < p$, $p \in \mathbb{Z}$, $0 \le p < \frac{\Delta(G)-1}{4}$ e $|V(G_1) \cap V(G_2)| \ge |V(G_2) \cap V(G_3)|$, então $\chi_a'(G) = \Delta(G) + 2$.

O Problema da Coloração de Arestas AVD está resolvido para split completos e split-indiferença.