Criticalidade arco-íris dos grafos resultantes de produto cartesiano de ciclos e caminhos

Aleffer Rocha Sheila Morais de Almeida

Universidade Tecnológica Federal do Paraná, Câmpus Ponta Grossa

4 de outubro de 2017

Introdução

Coloração de arestas:

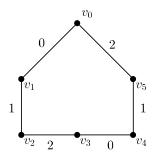


Figura: Grafo com coloração própria

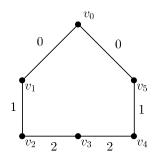


Figura: Grafo com coloração não própria

Introdução

Caminho arco-íris:

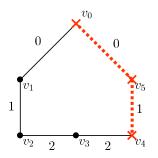


Figura: Caminho $v_0 - v_4 = v_0 v_5 v_4$ arco-íris

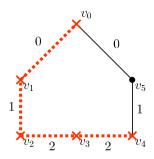


Figura: Caminho $v_0 - v_4 = v_0 v_1 v_2 v_3 v_4$ não arco-íris

Coloração Arco-íris

Uma atribuição de cores não necessariamente própria

$$c: E(G) \to \{0, 1, \dots, k-1\}$$

é uma coloração **arco-íris** se entre qualquer par de vértices de G existe um caminho arco-íris (CHARTRAND et al., 2008).

Problema da Coloração Arco-íris

Número de conexão arco-íris:

• rc(G): menor número de cores possível para uma coloração arco-íris em G.

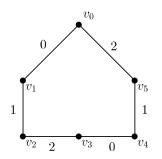


Figura: C_6 com uma coloração arco-íris

Problema da Coloração Arco-íris

Teorema (CHARTRAND et al., 2008)

Seja G um grafo com n vértices:

- Se G é uma árvore, rc(G) = n 1.
- Se G é um ciclo, $rc(G) = \lceil n/2 \rceil$.

Um grafo G é chamado de grafo arco-íris crítico se ao remover uma aresta qualquer, o número de conexão arco-íris de G aumenta (RAO; MURALI, 2014).

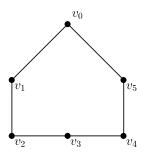


Figura: Grafo C_6

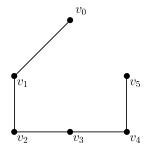


Figura: Grafo $C_6 - e$

Os ciclos são grafos arco-íris críticos. Note, que ao retirar uma aresta de um ciclo C_n , $n \ge 3$, $C_n - e$ trata-se de um caminho P_n , portanto, podemos concluir que:

•
$$rc(C_n) = \lceil n/2 \rceil \le rc(C_n - e) = n - 1$$
.

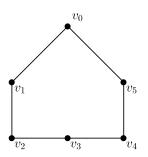


Figura: Grafo C₆

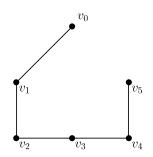


Figura: Grafo $C_6 - e$

A definição apresentada por Rao e Murali (2014) não é precisa, pois não está clara quando a remoção de uma aresta desconecta o grafo.

Neste trabalho, propomos que o número de conexão arco-íris de um grafo desconexo é infinito, desta forma, se a remoção de uma aresta desconecta o grafo, então ele é arco-íris crítico.

Se um grafo G é desconexo, logo existe um par de vértices u e v que não está conectado por um caminho.

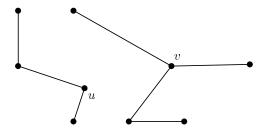
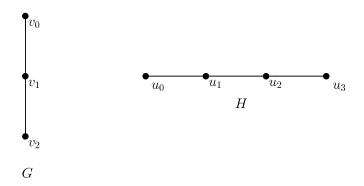
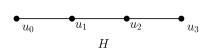


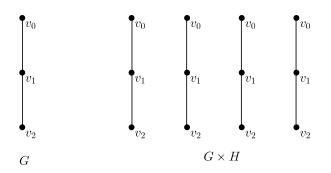
Figura: Grafo G desconexo

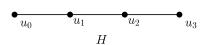
Neste caso dizemos que $rc(G) = \infty$, pois não há cores suficientes para ter um caminho arco-íris u - v.

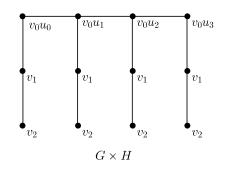
O produto cartesiano de G e H é um grafo com conjunto de vértices $V(G) \times V(H)$ e aresta entre dois vértices (v_i, u_j) e (v_k, u_l) se e somente se $(v_i, v_k) \in E(G)$ e $u_j = u_l$ ou se $(u_j, u_l) \in E(H)$ e $v_i = v_k$.

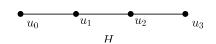


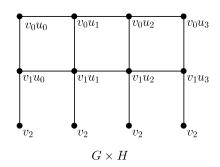


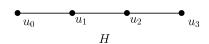


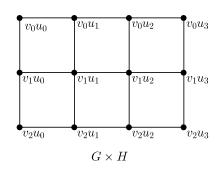


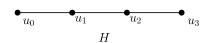












Seja $\epsilon(v_i)$ a excentricidade de um vértice de G, temos que o diam(G) é a maior excentricidade em G.

$$\epsilon(v_0) = 3$$

$$\epsilon(v_1) = 3$$

$$\epsilon(v_2) = 3$$

$$\epsilon(v_3) = 3$$

$$\epsilon(v_4) = 3$$

$$\epsilon(v_5) = 2$$

$$\epsilon(v_6) = 4$$

$$\epsilon(v_7) = 3$$

$$\epsilon(v_8) = 4$$

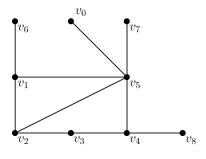


Figura: Grafo G

Portanto, diam(G) = 4.

Teorema (LI; SUN; ZHAO, 2013)

Seja $G = G_1 \times G_2 \times ... G_k$, $k \ge 2$, tal que G_i é conexo, $1 \le i \le k$. Então $rc(G) \le \sum_{i=1}^{k} rc(G_i)$. Além disso, se $diam(G_i) = rc(G_i)$ para todo G_i , $1 \le i \le k$, então a igualdade vale.

Conclusão:

- $rc(P_m \times P_n) = m + n 2$, para dois caminhos P_m e P_n com $2 \le m \le n$;
- $rc(C_m \times C_n) = (m+n)/2$, para dois ciclos C_m e C_n com $3 < m \le n$ e m e n pares;
- $rc(P_m \times C_n) = m 1 + n/2$, para um caminho P_m e um ciclo C_n com $m \ge 3$ e n par, $n \ge 3$.

Outros resultados sobre grafos resultantes do produto cartesiano de ciclos e caminhos:

Teorema (ROCHA; ALMEIDA, 2017)

Se $C_m \times P_n$ tem m impar e $n \ge 2$, então $rc(C_m \times P_n) = \lfloor m/2 \rfloor + n - 1$.

Teorema (ROCHA; ALMEIDA, 2017)

Seja $C_m \times C_n$ um grafo com m ímpar.

$$rc(C_m \times C_n) \begin{cases} = 2, & \text{se } m = n = 3; \\ = \lfloor n/2 \rfloor + 1, & \text{se } m = 3 \text{ e } n > 3; \\ = \lfloor m/2 \rfloor + n/2, & \text{se } m, n > 3 \text{ e } n \text{ \'e par}; \\ \leq \lfloor m/2 \rfloor + \lceil n/2 \rceil, & \text{se } m, n > 3 \text{ e } n \text{ \'e impar.} \end{cases}$$

Quanto a criticalidade de grafos resultantes de produto cartesiano de caminhos e ciclos pares.

Teorema (RAO; MURALI, 2014)

- $P_m \times P_n$, $m \in n \ge 2$, é arco-íris crítico;
- $C_m \times P_n$, m > 2 par e $n \ge 2$, é arco-íris crítico.

Quanto a criticalidade de grafos resultantes de produto cartesiano de caminhos e ciclos pares.

Teorema (RAO; MURALI, 2014)

- $P_m \times P_n$, m e $n \ge 2$, é arco-íris crítico;
- $C_m \times P_n$, m > 2 par e $n \ge 2$, é arco-íris crítico.

Refutamos estes resultados!

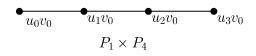
Resultados

Teorema (ROCHA; ALMEIDA, 2017★)

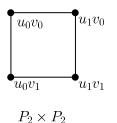
- O grafo $P_m \times P_n$ é arco-íris crítico se, e somente se, é um grafo caminho ou um C_4 ;
- O grafo $C_m \times P_n$, m par e $n \ge 2$ não é arco-íris crítico.

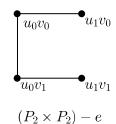
Teorema (ROCHA; ALMEIDA, 2017★)

• O grafo $P_m \times P_n$ é arco-íris crítico se, e somente se, é um grafo caminho ou um C_4 .

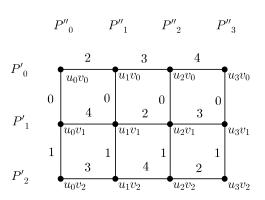


$$\begin{array}{cccc}
\bullet & & \bullet & & \bullet & \\
u_0v_0 & & \bullet & u_2v_0 & & \bullet \\
& & & & (P_1 \times P_4) - e & & & \\
\end{array}$$

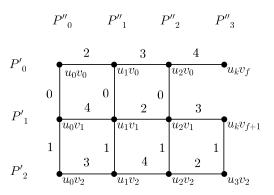




- Para os caminhos P_i'' as cores foram baseadas nos índices dos vértices v_i ;
- Para os caminhos P'_i , as cores foram baseadas na equação n-1+[(i+j)mod(m-1)].



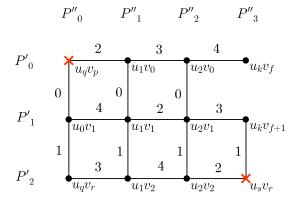
Removemos uma aresta $(u_k, v_f)(u_k, v_{f+1})$.



Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso que $p \neq q$ e $r \neq s$:

$$((u_q, v_p) - (u_s, v_p) \in P_p').((u_s, v_p) - (u_s, v_r) \in P_s'')$$

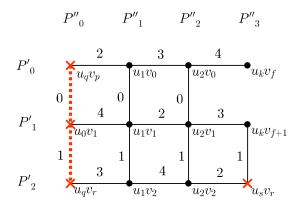
$$\bullet \ ((u_q,v_p)-(u_q,v_r)\in P_q'').((u_q,v_r)-(u_s,v_r)\in P_r')$$



Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso que $p \neq q$ e $r \neq s$:

$$\bullet \ ((u_q,v_p)-(u_s,v_p) \in P_p').((u_s,v_p)-(u_s,v_r) \in P_s'')$$

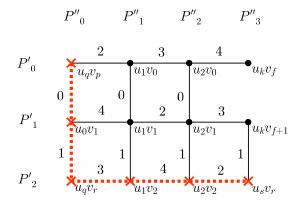
$$\bullet \ ((u_q,v_p)-(u_q,v_r) \in P_q'').((u_q,v_r)-(u_s,v_r) \in P_r')$$



Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso que $p \neq q$ e $r \neq s$:

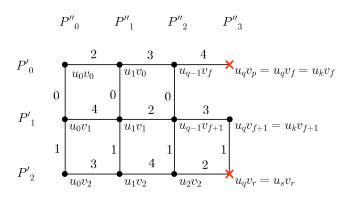
$$((u_q, v_p) - (u_s, v_p) \in P_p').((u_s, v_p) - (u_s, v_r) \in P_s'')$$

$$\bullet \ ((u_q,v_p)-(u_q,v_r)\in P_q'').((u_q,v_r)-(u_s,v_r)\in P_r')$$



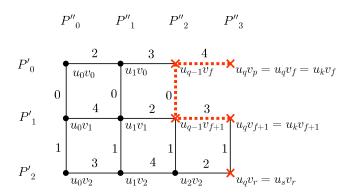
Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso em que q = s:

• Depende do valor de q, se temos $q > 0 \dots$



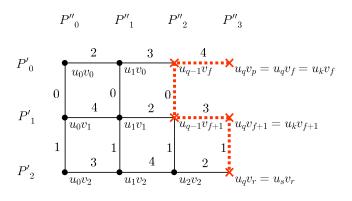
Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$:

• $(u_q, v_p) - (u_q, v_f)$ em P_q'' concatenado com $(u_{q-1}, v_f)(u_{q-1}, v_{f+1})(u_q, v_{f+1});$

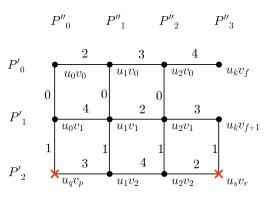


Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$:

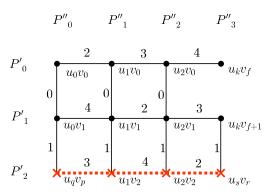
- $(u_q, v_p) (u_q, v_f)$ em P_q'' concatenado com $(u_{q-1}, v_f)(u_{q-1}, v_{f+1})(u_q, v_{f+1});$
- concatenado com o caminho $(u_q, v_{f+1}) (u_s, v_r)$ em P''_q .



Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso em que p = r:



Caminho arco-íris $(u_q, v_p) - (u_s, v_r)$. Seja o caso em que p = r:



Aleffer Rocha aleffer@alunos.utfpr.edu.br

Referências I

CHARTRAND, G. et al. Rainbow connection in graphs. *Mathematica Bohemica*, Institute of Mathematics, Academy of Sciences of the Czech Republic, v. 133, n. 1, p. 85–98, 2008.

LI, X.; SUN, Y.; ZHAO, Y. Characterize graphs with rainbow connection number m-2 and m-3. arXiv preprint arXiv:1312.3068, 2013.

RAO, K. S.; MURALI, R. Rainbow critical graphs. *International Journal of Computer Application*, v. 4, n. 4, p. 252–259, 2014.

ROCHA, A.; ALMEIDA, S. M. Coloração arco-íris em grafos resultantes de produto cartesiano. In: *Anais do XXXVII Congresso da Sociedade Brasileira de Computação*. São Paulo, SP: [s.n.], 2017. p. 83–86.

