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aDepartment of Computer Science, Federal University of Parana, Curitiba, Brazil
bCorresponding author: vignatti@inf.ufpr.br

Abstract

We present an analytical derivation of the preferential attachment metric to predict social
ties in complex networks. This metric was originally proposed by Newman in 2001 and by
Barabási et al. in 2002 and it was obtained by empirical means. We propose in this paper an
analysis based on a deductive-formal reasoning, giving the metric a formal theoretical basis.
In our analysis we use two random graph models for power-law graphs. We show that in
these models, by using formal reasoning, we can derive the preferential attachment metric
proposed by Newman and Barabási et al.
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1. Introduction

For a given complex network and a pair of its non-adjacent vertices, the link prediction
problem asks for the probability that these vertices may become connected by an edge in a
near future. Even though this problem has been studied since early 2000’s [1], it still remains
challenging and has been focus of recent research on the area of complex networks [2, 3]. As
pointed by Liben and Kleinberg [1], most of the existing link prediction methods are based
on network metrics (e.g. common neighbors, Jaccard measure, Katz centrality). In this
work, we are particularly interested in methods based on one of these type of metrics. More
precisely, we deal with the preferential attachment (PA) metric [1, 4, 5], which is suitable for
networks modeled by graphs that have a degree distribution following a power-law function,
which are referred here as power-law graphs. Power-law graphs appear in many contexts,
including technological, biological, and social networks, so the subject has attracted attention
lately from many authors [2, 3, 6]. When first proposed [4, 5], the PA metric was obtained
empirically, from experiments on real networks. Indeed, as observed by Liben and Kleinberg
[1] in the context of authorship and co-authorship in research publications, where vertices
represent researchers and an edge between two vertices x and y indicates that x and y have
published a paper together, “Newman [5] and Barabási et al. [4] have further proposed, on
the basis of empirical evidence, that the probability of co-authorship of x and y is correlated
with the product of the number of collaborators of x and y”. This raises an issue: from the



point of view of formal sciences (such as logic, mathematics, statistics, theoretical computer
science, etc.), the lack of a formal proof is a stumbling block for further results regarding the
PA metric.

In this paper we show a deductive-formal derivation of the PA metric. More specifically,
we start with three random graph models (as the premises of the formal system), and then
we give an analytical derivation for the PA metric in these models. We conclude that the
result is considered epistemologically stronger since the result holds both in the formal and
empirical paradigms.

2. Preliminaries

Reasoning Methods : deductive reasoning is the process of reasoning from one or more state-
ments (premises) to reach a logically certain conclusion. If all premises are true and the rules
of deductive logic are followed, then the conclusion is necessarily true [7]. Inductive rea-
soning (as opposed to deductive) is a reasoning in which the premises are seen as providers
of strong evidence for the truth of the conclusion [7]. Formal sciences are constructed on
formal-deductive arguments (theorems), and inductive reasoning is not accepted. Thus, in
the context of a formal epistemology, a PA metric cannot be used unless a proper derivation
(i.e., a proof) is provided.

Models : A model is a simplified abstract view of a complex reality. Ideally the formal model
should not produce theoretical consequences that are contrary to what is found in reality
[8, 9]. Typically, however, the model is an approximation, since a complete and precise
representation of the reality may be impossible [10]. Thus, it is commonplace that several
different models are considered to represent the same reality. In our context, the models are
the initial premises of the deductive reasoning process.

Power-law Graphs : The empirical study of large real-world networks in the late 1990’s and
early 2000’s [11, 12] showed that the number of nodes of a given degree i is proportional to
i−β, where β > 0. Such degree distribution is called power law. This discovery was soon
followed by works describing models for those networks, which involve the use of random
graphs with power-law degree distribution, referred here as power-law graphs.

Preferential Attachment (PA) Metric: This metric was proposed by Newman [5] and Barabási
et al. [4] independently, through experiments. Given a pair of vertices (u,w), the PA metric

is defined by PA(u,w) = d(u)d(w)∑
v d(v)

, where d(v) is the degree of vertex v of a given graph.

So, starting from the power-law graph models as the premises, we provide an analysis
that has all steps based on deductive reasoning and, in the end, we give a definition of the
PA metric.
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Figure 1: The complete path of the analysis.

3. Analysis

Our analysis is an interplay between several models, with theorems supporting the in-
tended result (see Figure 1 for a scheme). As common practice in deductive reasoning, we
take the models as premises, from where the theorems are then derived. Next, we briefly
describe the models that we used (for an in-depth exposition, see [13]). Throughout this
paper, we use ≈ to denote an asymptotic approximation.

Configuration Model [14]: this is a random graph model suitable when we need certain
degree distribution of the graph. The model uses an approach where edge connections are
probabilistic, but the list of vertex degrees (and therefore the number of edges) is fixed. Let
d(v) be the degree of a vertex v = 1, . . . , n. The idea is to create a random graph in the
following way. For each vertex v, let it have d(v) “half edges” incident to it. Now pick a
random perfect matching between the half edges pairing them and connecting them together.
As a result we obtain a graph such that each vertex has exactly the desired degree d(v). In
many contexts, proving results in this model is not an easy task, since the probabilistic events
carry dependencies, and that makes it very hard to obtain useful results, in particular for
algorithm design.

ACL(α, β) Model [15]: the model is obtained from the configuration model using a specific
degree distribution for a power-law function. The model depends on input parameters α and
β where, roughly speaking, α corresponds to the logarithm of the graph size, and β is the
power-law constant (weakly) related to the graph density. Let yi be the number of vertices
with degree i. In this model, by definition, yi = b eα

iβ
c. Notice that the maximum degree

of the graph is beα/βc (which is the case where yi = 1). Also, we can ignore rounding [13].

Assuming1 β > 2, the number of vertices is
∑e

α
β

i=1
eα

iβ
≈ ζ(β)eα and the number of edges is

1This is for the purpose of easing the exposure, as [13] deals with other cases for β.
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∑e
α
β

i=1 i
eα

iβ
≈ 1

2
ζ(β − 1)eα, where ζ(t) =

∑∞
n=1

1
nt

is the Riemann zeta function.

Generalized Random Graph (GRG) Model [16]: in this model edges are added independently,
and weights on the vertices are used to generate arbitrary distribution of the degrees, includ-
ing the power-law distribution. Starting with a vertex set V = {1, 2, ..., |V |}, let each v ∈ V
have weight wv. Let w be an array with entries w1, ..., w|V |. In the edge set E, every edge uz
is created independently with probability P(uz ∈ E) = wuwz

`n+wuwz
, where `n =

∑
v∈V wv. Note

that the degree distribution depends on w. To obtain a power-law distribution, we build w
using the degree distribution from the ACL model, which is a power-law distribution. How-
ever, note that while the ACL model is a specification of the configuration model, here we
are providing a specification of the GRG model. In Section 3.1 we give more details.

Chung–Lu Model [17, 18]: this model is similar to the GRG model, the difference relying on
the probability P(uz ∈ E) = wuwz

`n
, where again `n =

∑
v∈V wv. For some values of wv, there

is hardly any difference between P(uz ∈ E) = wuwz
`n+wuwz

and P(uz ∈ E) = wuwz
`n

. In fact, as

shown in [13] (Theorem 6.19), when
∑

v∈V w
3
v = o(n3/2), GRG and Chung–Lu models are

equivalent, but this general condition is not always met for power-law graphs. In Section 3.1,
we show how these two models are related.

3.1. Deriving the Metric

Our goal in this section is to derive a formula for the probability of an edge appearing
between two vertices that is consistent with the empirical definition of the metric.

Due to dependency between events in the configuration model, it is unclear how to obtain
a probability for the link prediction directly for the ACL model when it is used as a power-law
random graph model. However, since some parameters in the ACL model (e.g., yi, α, and
β) are convenient when dealing with power-law graphs, we use them as mathematical tools
to specify the parameters for the GRG and the Chung-Lu models. In the GRG model, we
set the weights w so that yi of its entries are equal to i, for i = 1, ...,∆, where ∆ = beα/βc
(note that, similarly, in the ACL model there are yj vertices of a given fixed degree j). Now,
the specific GRG model with power-law parameters creates an edge uz independently with
probability P(uz ∈ E) = wuwz

`n+wuwz
≈ wuwz

ζ(β−1)eα+wuwz , where `n =
∑

v∈V wv.

Lemma 3.1 (Vignatti and da Silva (2016) [6], Lemma 2.1). Let wu, wv ∈ {1, . . . , e
α
β }. Then

eαζ(β − 1) + wuwv ≈ eαζ(β − 1).

By Lemma 3.1, P(uz ∈ E) ≈ wuwz
ζ(β−1)eα ≈

wuwz
`n

, which is the probability of creating an edge

in the Chung–Lu model. The results then hold on both GRG and Chung–Lu models2.

Theorem 3.2. Let v ∈ V such that wv = k. Then E[d(v)] ≈ k, where d(v) is the degree of
v.

2The Chung–Lu model can be shown to be asymptotically equivalent to the GRG model under conditions
(see [13], Section 6.8.1) that are not necessarily true in our choice of w.



Proof. Let Wi be the set of vertices with weight i, i.e., Wi = {v ∈ V | wv = i} in GRG or
Chung–Lu models following the ACL power-law distribution in the assignment of the weights.
Let di(v) be the number of neighbors of v in Wi.

Note that di(v) is a binomial random variable with parameters n = |Wi| and p = ik
eαζ(β−1) .

Therefore,

E[di(v)] = |Wi|pik =

(
eα

iβ

)(
ik

eαζ(β − 1)

)
=

k

iβ−1ζ(β − 1)
,

which leads to

E[d(v)] =
∑
i

E[di(v)] =
∑
i

k

iβ−1ζ(β − 1)
≈ k

ζ(β − 1)
ζ(β − 1) = k.

The first equality is by linearity of expectation and d(v) =
∑

i di(v).

By Theorem 3.2, our model has power-law expected distribution, since it has eα

iβ
vertices

of expected degree i, for each 1 ≤ i ≤ ∆. Next, we show that in these models the theoretical
and empirical definitions of the PA metric are consistent to each other (i.e., it depends on
the degrees of the vertices).

Theorem 3.3 (Preferential Attachment Metric). Consider u, z ∈ V in the models GRG or
Chung–Lu following the ACL power-law distribution in the assignment of the weights. Then
P(uz ∈ E) ≈ d(u)d(z)

|E| , where d(u) and d(z) are the degrees of u and z, respectively.

Proof. P(uz ∈ E) = wuwz
`n+wuwz

≈ wuwz
`n
≈ d(u)d(z)

|E| , where the first equality is from the definition
of the GRG model, the first approximation uses Lemma 3.1, and the second approximation
uses Theorem 3.2, noting that `n ≈ |E|.

4. Conclusion and Future Work

In this work we showed that the PA metric empirically proposed in [5, 4] is the same as the
one we derived through our analysis using deductive reasoning. This result gives the metric
a formal theoretical basis, so that it can be investigated in the framework of formal sciences.
Since many link prediction metrics originate from the inductive paradigm of reasoning, we
suggest using deductive analysis on such metrics as future work.
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