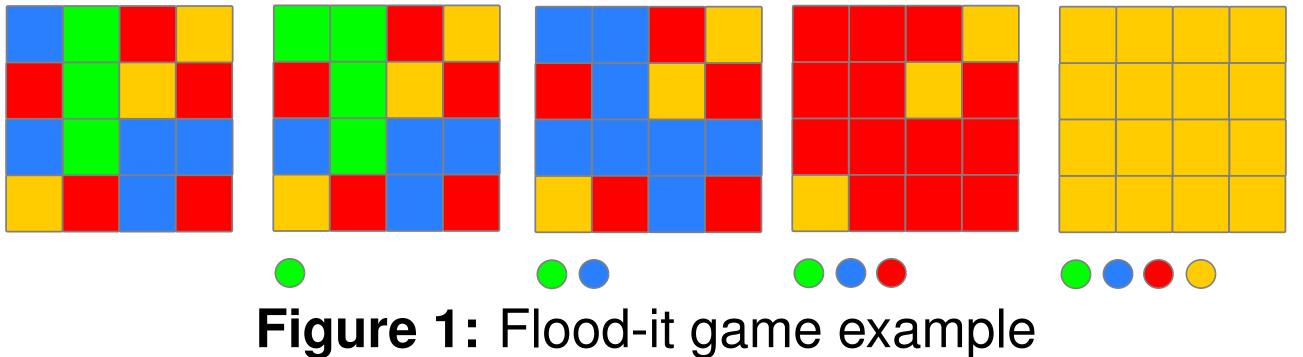
Workshop de Pesquisa em Computação dos Campos Gerais 2021 Flood-it Game on Co-comparability Graphs

Guilherme Quintero Lorenzi^{1,2} e Sheila Morais de Almeida^{1,3}

Flood-it Game

The *Flood-it game* is a game on a pre-colored board where each cell has a color, and in each turn, the player assigns a new color to one of the cells on the board. When a cell receives a new color, it is merged with all its neighbors with the same color (see Figure 1). The goal of the game is to obtain a monochromatic board using the minimum number of turns. There are two versions of this game: the free-pivot version and the fixed-pivot version.



The Flood-it game can be generalized for graphs: given a graph whose vertices were previously colored, a new color is assigned to the pivot in each turn and this assignment of color is propagated to every vertex connected to the pivot by a monochromatic path (considering the coloring as when the turn starts).

Previous Results

The fixed pivot version of the Flood-it game is polynomialtime solvable for interval graphs (Hiroyuki et al., 2011), powers of paths P_n^2 and power of cycles C_n^2 (Souza et al., 2014), and $2 \times n$ circular grid graphs (Souza et al., 2014).

Co-comparability Graphs

A *co-comparability graph* is the intersection graph of curves between two parallel lines (see Figure 2). Fleischer and Woeginger (2012) proved that the fixed-pivot Flood-it game is polynomial-time solvable for co-comparability graphs. Figure 2 presents a flooding sequence on a co-

¹Universidade Tecnológica Federal do Paraná - Câmpus Ponta Grossa, Departamento Acadêmico de Informática ²guilhermequintero@alunos.utfpr.edu.br; ³sheilaalmeida@utfpr.edu.br

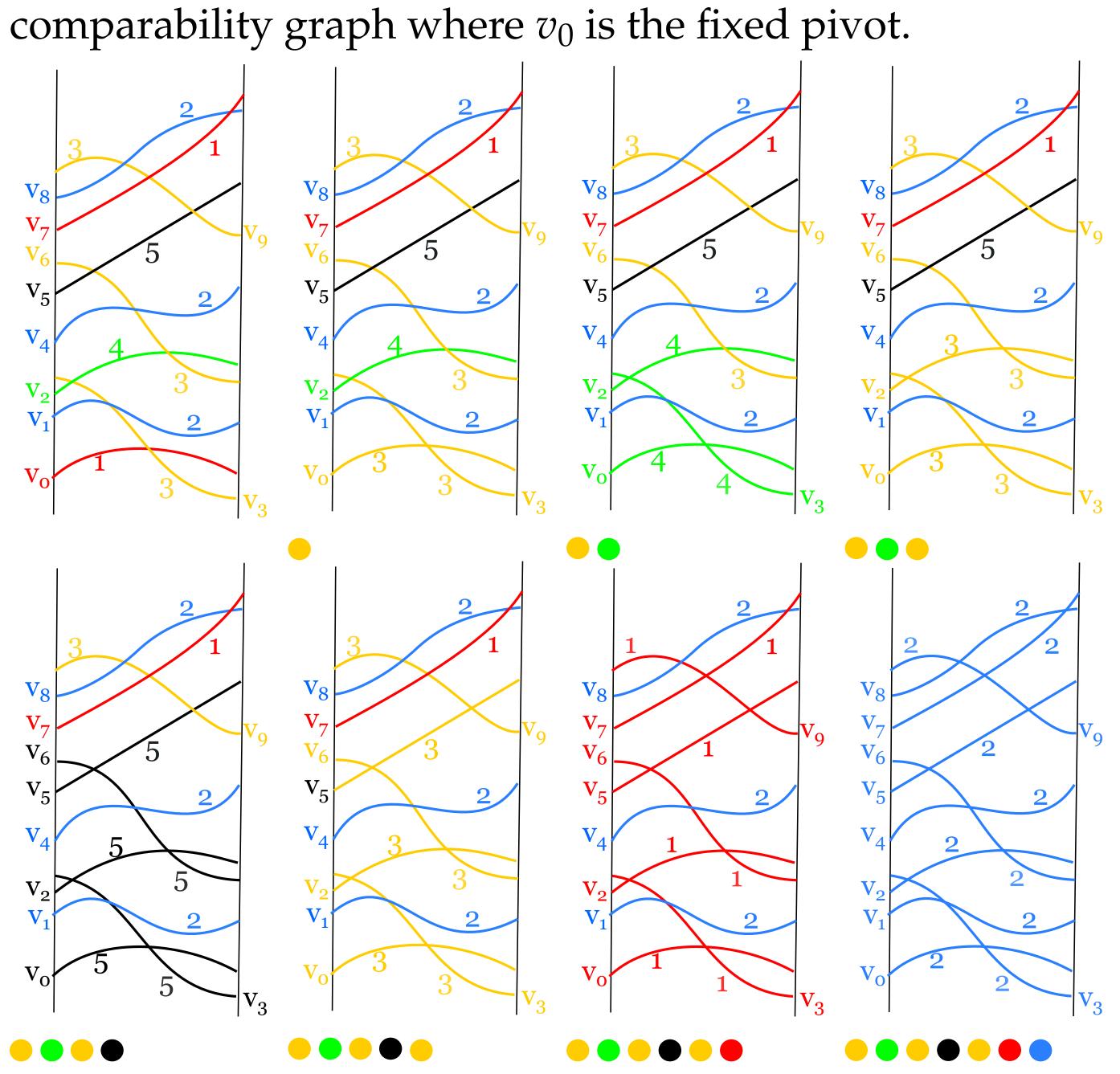


Figure 2: Flood-it game on a co-comparability graph

Fleischer and Woeginger (2012) present two algorithms to solve the Flood-it game on co-comparability graphs: a single source shortest path algorithm and a dynamic programming, defined as follows.

- Max(c): the largest node of color *c*;
- *M*: the set of nodes Max(c), for all colors *c*;
- M_{max} : the set of maximal elements of the partial order;
- $ess(\gamma)$: $|\gamma|$ minus the number of steps where γ conquers a node in *M*.
- $D(v) = ess(\gamma)$, where γ is a shortest color sequence that conquers v when starting at v_0 .

The optimal solution is the $\min_{v \in M_{max}}(D(v)) + k$, where k is the number of colors in the original graph. The value of D(v) can be defined recursively:

Result

We claim that this recursive definition of D(V) is not welldefined. We present the following counterexample.

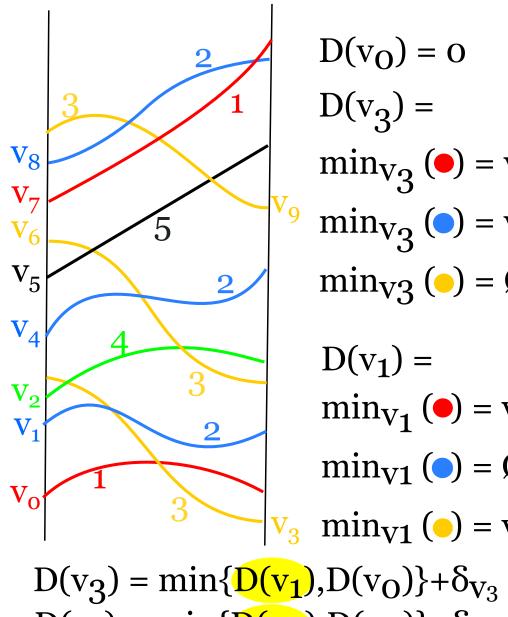


Figure 3: Counterexample for the dynamic programming of Fleischer and Woeginger (2012)

References

Fleischer, Rudolf, and Gerhard J Woeginger. 2012. An algorithmic analysis of the honey-bee game. *Theoretical Computer Science* 452:75–87.

- 16(3):279–290.

This project has financial support from CNPq. (428941/2016-8).

CÂMPUS PONTA GROSSA

 $D(v_i) = \begin{cases} 0, \text{ if } i = 0 \ (v_0 \text{ is the pivot});\\ \min_c(D(\min_{v_i}(c) + \delta(v_i)), \text{ if } i > 0, \end{cases}$ where $\delta(v_i) = 0$, if $v \in M$; and $\delta(v_i) = 1$ otherwise.

> $D(v_0) = 0$ $D(v_3) =$ $\min_{V_3}(\bullet) = v_0$ $\min_{V_3} (\bullet) = v_1$ $\min_{V3} (\bullet) = \emptyset$ $D(v_1) =$ $\min_{V_1} (\bullet) = v_0$ \min_{V1} (•) = Ø $\min_{v_1} (\bullet) = v_3$

 $D(v_1) = \min\{\frac{D(v_3)}{D(v_0)}\} + \delta_{V_1}$

Hiroyuki, Fukui, Nakanishi Akihiro, Uehara Ryuhei, Uno Takeaki, and Uno Yushi. 2011. The complexity of free flood filling games. *Proceedings of The 14th Korea-Japan Joint Workshop on Algorithms and Computation* 2011(7):1–5.

Souza, U. S., F. Protti, and M. D. Silva. 2014. An algorithmic analysis of Flood-It and Free-Flood-It on graph powers. Discrete Mathematics and Theoretical Computer Science