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Abstract. Similar to the way snarks are defined for 3-regular graphs, we present
the definition of H-snarks for 5-regular graphs. Although we do not know any
such graph yet, we prove that they must exist, unless P = N'P. We also prove
that, unless P = NP, the number of 5-snarks of a given order cannot be poly-
nomially bounded.

Resumo. De modo similar a como snarks sdo definidos para grafos 3-regulares,
apresentamos a definicdo de 5-snarks para grafos 5-regulares. Embora ndo
conhecamos nenhum destes grafos ainda, provamos que eles precisam existir, a
menos que P = N'P. Também provamos que, a menos que P = NP, o niimero
de 5-snarks de uma dada ordem ndo pode ser limitado polinomialmente.
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1. Introduction

The Four Colour Theorem is a major and well-known result in the history of Mathematics
which states that no more than four colours suffice to colour any map in such a way that no
two adjacent regions are coloured the same. This statement was first conjectured in 1852
and it took more than 120 years to be proved [Appel and Haken 1977, Appel et al. 1977].
During the 20 century, many research branches in Combinatorics and Computer Science
have been developed from the efforts on trying to prove the Four Colour Theorem, spe-
cially the studies on graph colouring problems and on graph planarity and embeddings,
leading to several important applications [Fu and Ma 2013, Lewis 2016].

Amongst the earliest results on the Four Colour Problem is Tait’s Theorem, which
states that the Four Colour Theorem (Conjecture, by that time) is equivalent to the state-
ment that there is no cubic (i.e. 3-regular) 2-edge-connected non-3-edge-colourable graph!
which is planar [Tait 1880]. Cubic 2-edge-connected non-3-edge-colourable graphs have
very peculiar properties and play an important role concerning many graph problems
[Chladny and Skoviera 2010]. These graphs were named snarks by [Gardner 1976] after
the mysterious thing hunted in the poem The Hunting of the Snark, by Lewis Carroll.

The first snark to be known was the Petersen graph (Fig. 1a), which, although
credited to Petersen [Petersen 1898], had already appeared earlier [Kempe 1886]. It took

'We refer the reader to [Diestel 2010] for graph-theoretical definitions, whose notation we follow. For
definitions on Computational Complexity, we refer the reader to [Arora and Borak 2007].
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Figure 1. The Petersen graph (a) and the Blanusa snarks (b)

half a century for other three snarks to be found: the two 18-vertex BlanuSa snarks
[Blanu$a 1946] (Fig. 1b) and the 210-vertex Descartes snark [Descartes 1948]. The first
infinite family of snarks to be shown are the Flower snarks [Isaacs 1975]. Now it is
known that the number of snarks of sufficiently large even order n is at least 2(781/18
[Skupien 2007] (recall that there is no cubic graph of odd order). However, despite this
exponential lower bound, snarks can be still regarded as rare graphs, since, for every
d > 3, the proportion of d-regular non-d-edge-colourable graphs of even order n over all
n-order d-regular graphs goes to 0 as n/2 goes to oo [Robinson and Wormald 1994].

In this paper, we introduce the 5-snarks, defined below for 5-regular graphs simil-
arly as snarks are defined for cubic graphs. As much is known about the relation between
snarks and important graph problems and conjectures when restricted to cubic graphs,
the aim of investigating 5-snarks is to improve the state of the art of these problems and
conjectures concerning graphs of higher degree.

Definition. A 5-snark is a 5-regular 4-edge-connected non-5-edge-colourable graph.
Although we do not know yet any graph fitting this definition, we prove that:
Theorem 1. If 5-snarks do not exist, then P = NP.
Not only these graphs must exist, but there cannot be foo few of them?.

Corollary 2. There cannot be a polynomial p(n) which bounds above the number of 5-
snarks of order n, unless P = NP.

Amongst the important open graph problems related to the snarks are the Over-
full and the I-Factorisation Conjectures in edge-colouring®. A graph G is said to be
subgraph-overfull (SO) if has a subgraph H with A(H) = A(G) = A which is over-
full,ie. |E(H)| > A[|V(H)|/2]. Clearly, no SO graph can be A-edge-colourable, but
the converse does not hold, and in the same manner that the snarks are examples of cubic
graphs which are neither 3-edge-colourable nor SO, the 5-snarks are examples of 5-regular

2We remark that there cannot also be z0o many 5-snarks, again from [Robinson and Wormald 1994].
3We refer the reader to [Zatesko 2018, Ch. 2] for references and details on these important conjectures.
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graphs which are neither 5-edge-colourable nor SO (see Observation 4). This implies that
5-snarks have at least 16 vertices, unless the Overfull Conjecture does not hold, since this
conjecture states that all non-A-edge-colourable graphs with less than 3A vertices are SO.

The proofs for our results are presented next. We remark that, in this paper, graphs
are assumed to be undirected and loopless, but they are allowed to have parallel edges.

2. Proofs
Consider the following decision problem.

EDGE-COLOURING:
Instance: a graph G,
Question: is G a A(G)-edge-colourable* graph?

This problem is N/P-complete [Holyer 1981] even restricted to d-regular graphs for any
constant d > 3 [Leven and Galil 1983].

Now, for any constant d > 3, consider this restriction of EDGE-COLOURING.

EDGE-COLOURING(d-regular, (d — 1)-edge-connected):
Instance: a d-regular (d — 1)-edge-connected graph G;
Question: is G a d-edge-colourable graph?

In order to prove Theorem 1, we shall first prove the following.
Theorem 3. EDGE-COLOURING(5-regular, 4-edge-connected) is NP-complete.

The proof of Theorem 3 goes by reducing EDGE-COLOURING(5-regular) to its
restriction EDGE-COLOURING(5-regular, 4-edge-connected). In order to do so using a
traditional Karp reduction [Karp 1972], we should present a polynomial-time algorithm
which, receiving a 5-regular graph G, outputs a 5-regular 4-edge-connected graph G*
which is 5-edge-colourable if and only if G is 5-edge-colourable. However, our proof uses
a Turing oracle reduction’ (as the reduction used in Cook’s proof of the A’P-completeness
of the Boolean satisfiability problem [Cook 1971]) instead of a Karp reduction. In the con-
text of our problem, such reduction can be viewed as a polynomial-time algorithm which,
receiving a d-regular graph G, outputs not only one, but possibly several 5-regular 4-edge-
connected graphs which are all 5-edge-colourable if and only if G is 5-edge-colourable
(or, equivalently, outputs a possibly disconnected 5-regular graph G* whose connected
components are 4-edge-connected in a manner that G* is 5-edge-colourable if and only if
G is b-edge-colourable). Observe that the construction of such reduction still implies that
if EDGE-COLOURING(5-regular, 4-edge-connected) is in P, then P = NP.

In the construction of our reduction, we assume that the input of the reduction,
i.e. the instance of EDGE-COLOURING(5-regular), has no cut with 1 or 3 edges, in view of
an argument on edge-colouring regular graphs known as the Parity Lemma [Isaacs 1975].

“No graph admits edge-colourings using less than A colours. Since every simple graph is (A +1)-edge-
colourable [Vizing 1964], A-edge-colourable graphs and non-A-edge-colourable graphs are often referred
to as Class I and to as Class 2 graphs in the literature, respectively. However, we avoid these terms in this
paper as the graphs dealt may not be simple (and hence may require more than A + 1 colours).

SWe refer the reader to [Arora and Borak 2007] for a more detailed discussion on types of reductions.
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This lemma states that if G is a d-regular d-edge-colourable graph and /' C E(G) is a cut
in G, then, for any d-edge-colouring of G with colour set {1,...,d},

fi=fo=-=f; (mod?2),

being f, the number of edges in F' coloured o € {1,...,d}. From the Parity Lemma
follows that if G is a d-regular graph and has a cut F' C F(G) such that |F| is odd
and strictly less than d, then GG cannot be d-edge-colourable. Hence, the restriction of
EDGE-COLOURING(5-regular) to graphs with no cut with 1 or 3 edges is as hard as
EDGE-COLOURING(5-regular) itself, since for graphs having a cut with 1 or 3 edges the
answer of the problem is known — it is no. Recall that it can be decided in polynomial
time if G has a cut with 1 or 3 edges [Ford and Fulkerson 1956, Edmonds and Karp 1972].

Proof of Theorem 3. Let G be a 5-regular graph having no cut with 1 or 3 edges. We
shall show how to construct in polynomial time a 5-regular graph G* whose connected
components are 4-edge-connected in a manner that G* is 5-edge-colourable if and only
if G is b-edge-colourable. If G is already 4-edge-connected, then our reduction simply
outputs G* := G. If G is not 4-edge-connected, then all its cuts of cardinality smaller
than 4 have 0 or 2 edges. While some connected component of G still has a cut F' with
2 edges uv and u'v’, being u and v’ on the same side of the cut, we replace the edges uv
and u'v" with the edges uu’ and vv’ (parallel edges can be created this way, but they are
not a problem), as Fig. 2 illustrates. In the end, the result is a 5-regular graph G* whose
connected components are 4-edge-connected. Notice that iteratively finding cuts with 2
edges in GG until it has none can be done in polynomial time. Also, since we only consider
cuts with 2 edges connecting vertices in the same connected component, the number of
such cuts in the graph G is decremented at each cut considered, so our reduction halts.
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Figure 2. The acting of the reduction over a cut with two edges

We shall prove that G is 5-edge-colourable if and only if G* is 5-edge-colourable.

e If G' admits a 5-edge-colouring, then, for every cut F' = {uv, u'v'} considered in
an iteration of the reduction, the Parity Lemma guarantees that wv and u'v’ are
coloured the same. Hence, we can transfer this colour to the edges uu’ and vv'’
and this leads to the construction of a 5-edge-colouring of G* once all cuts with 2
edges have been considered.

e Conversely, if G* admits a 5-edge-colouring, then we consider, one at a time, every
cut F' = {uv,u/v'} taken in an iteration of the reduction, transferring the colour
of the edges uu' and vv’ created by the reduction to the edges uv and '+, thus
yielding the construction of a 5-edge-colouring of GG. Clearly, this works if uu/’
and vv’ are coloured the same, but if they are not, we recall that both sides of the
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cut have been disconnected by the reduction, so we can permute the names of the
colours in one of the sides in order to get the same colour on both uu' and vv'. [J
Proof of Theorem 1. Since 5-snarks are by definition the negative instances of the prob-
lem EDGE-COLOURING(5-regular, 4-edge-connected), if they do not exist then this prob-
lem admits an O(1)-time algorithm, which by Theorem 3 implies P = NP. O

Corollary 2 follows from the classical Fortune—-Mahaney’s Theorem on the com-
putational complexity of sparse languages [Fortune 1979, Mahaney 1982]. A language L
is said to be sparse if there is a polynomial p(n) such that the number of words of length
n belonging to L is bounded above by p(n) for any n. The Fortune-Mahaney’s Theorem
states that if any sparse language is NP-complete or coN’P-complete, then P = NP.

Proof of Corollary 2. Follows by observing that the proof of Theorem 1 immediately
implies that the language of the 5-snarks is coA/P-complete, so it cannot be sparse. [

We conclude observing the importance of 5-snarks in the context of the Overfull
and the 1-Factorisation Conjectures, as briefly discussed in Section 1, and encouraging
further investigation on these graphs and other interesting questions which arise: Do 5-
snarks contain 3-snarks as subgraphs? Do they allow infinite family constructions?

Observation 4. No 5-snark can be SO.

Proof. A graph G on n vertices is overfull if and only if }_ . )(A(G) — dg(u)) <
A(G) — 2 and n is odd [Niessen 1994]. Ergo, if a 5-snark is SO, then it has an overfull
subgraph H with A(H) = 5 and, since 5-regular graphs have even order, V (H) # V(G).
Further assuming, without loss of generality, that H is induced by V(H) =: U, we have
that s == > cy ) (A(H) — dr(u)) is the number of edges uv € E(G) with u € U and
v ¢ U, so s < 3 by the overfullness of H, but s > 4 by Definition 1, a contradiction. [J
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