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Introduction



Origins

The Four Colour Conjecture (Francis Guthrie, 1852)

Every map is 4-colourable
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Origins

The Four Colour Theorem (Appel et al., 1977)

Every map is 4-colourable

K. Appel andW. Haken (1977). Every planar map is four colorable. Part I: Discharging. Illinois J. Math. 21 (3), pp. 429–
490.

K. Appel, W. Haken and J. Koch (1977). Every planar map is four colorable. Part II: Reducibility. Illinois J. Math. 21
(3), pp. 491–567.
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Origins

Tait’s Theorem (Tait, 1880)

The Four Colour Theorem is equivalent to the statement that

no snark is planar

P. G. Tait (1878–1880). On the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A 10, pp. 501–503, 729.
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Origins

Tait’s Theorem (Tait, 1880)

The Four Colour Theorem is equivalent to the statement that

no snark is planar

Being a snark defined as:

• 3-regular graph

• 2-edge-connected

• non-3-edge-colourable

P. G. Tait (1878–1880). On the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A 10, pp. 501–503, 729.
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Origins

Tait’s Theorem (Tait, 1880)

The Four Colour Theorem is equivalent to the statement that

no snark is planar

Being a snark defined as:

• 3-regular graph

• 2-edge-connected

• non-3-edge-colourable

Lewis Carrol, 1876

P. G. Tait (1878–1880). On the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A 10, pp. 501–503, 729.
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Previous results

Petersen Graph, 1898

J. Petersen (1898). Sur le théorème de Tait. L’Intermédiaire des Mathématiciens 5, pp. 225–227.

D. Blanuša (1946). Problem četiriju boja. Glasnik. Mat. Fiz. Astr. Ser. II 1, pp. 31–42.
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Petersen Graph, 1898

Blanuša Snarks, 1946

J. Petersen (1898). Sur le théorème de Tait. L’Intermédiaire des Mathématiciens 5, pp. 225–227.

D. Blanuša (1946). Problem četiriju boja. Glasnik. Mat. Fiz. Astr. Ser. II 1, pp. 31–42.
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Previous results

Flower Snark J3

R. Isaacs (1975). Infinite families of non-trivial trivalent graphs which are not Tait-colorable. Amer. Math. Monthly
82 (3), pp. 221–239.

Z. Skupień (2007). Exponentially many hypohamiltonian snarks. Electron. Notes Discrete Math. 28, pp. 417–424.

R. W. Robinson and N. C. Wormald (1994). Almost all regular graphs are hamiltonian. Random Struct. Algor. 5 (2),
pp. 363–374.
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Previous results

Flower Snark J3

• bounded below by: [Skupień 2007]

2(n−84)/18

R. Isaacs (1975). Infinite families of non-trivial trivalent graphs which are not Tait-colorable. Amer. Math. Monthly
82 (3), pp. 221–239.

Z. Skupień (2007). Exponentially many hypohamiltonian snarks. Electron. Notes Discrete Math. 28, pp. 417–424.

R. W. Robinson and N. C. Wormald (1994). Almost all regular graphs are hamiltonian. Random Struct. Algor. 5 (2),
pp. 363–374.
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Previous results

Flower Snark J3

• bounded below by: [Skupień 2007]

2(n−84)/18

• still rares [Robinson and Wormald 1994]

R. Isaacs (1975). Infinite families of non-trivial trivalent graphs which are not Tait-colorable. Amer. Math. Monthly
82 (3), pp. 221–239.

Z. Skupień (2007). Exponentially many hypohamiltonian snarks. Electron. Notes Discrete Math. 28, pp. 417–424.

R. W. Robinson and N. C. Wormald (1994). Almost all regular graphs are hamiltonian. Random Struct. Algor. 5 (2),
pp. 363–374.
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Our results

Definition

A 5-snark is a 5-regular 4-edge-connected

non-5-edge-colourable graph
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Our results

Definition

A 5-snark is a 5-regular 4-edge-connected

non-5-edge-colourable graph

Although we do not know any 5-snark yet

Theorem

If 5-snarks do not exist, then P =NP

Not only 5-snarksmust exist

Corollary

There cannot be a polynomial p(n) which bounds above the

number of 5-snarks of order n , unless P =NP

5



Related open graph problems

Related open problems:

• Overfull Conjecture
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Related open graph problems

Related open problems:

• Overfull Conjecture

• 1-Factorisation Conjecture
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Overfull Conjecture

A graph G is said to be overfull if |E (G )| > ∆⌊n/2⌋

1

1
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4
5

|E (G )| = 9

∆

⌊n
2

⌋

= 4 ·2 = 8
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Overfull Conjecture

A graph G is said to be subgraph-overfull (shortly, SO) if it has

an overfull ∆-subgraph H

1
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H

|E (G )| = 10

∆

⌊n
2

⌋

= 4 ·3 = 12
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Overfull Conjecture

Overfull Conjecture

(Chetwynd and Hilton, 1984, 1986; Hilton and Johnson,

1987)

If ∆ > n/3, then G is non-∆-edge-colourable if and only if it is SO.

A. G. Chetwynd and A. J. W. Hilton (1984). The chromatic index of graphs of even order with many edges. J. Graph
Theory 8, pp. 463–470.

A. G. Chetwynd and A. J. W. Hilton (1986). Star multigraphs with three vertices of maximum degree. Math. Proc.
Cambridge Philos. Soc. 100, pp. 303–317.

A. J. W. Hilton and P. D. Johnson (1987). Graphs which are vertex-critical with respect to the edge-chromatic number.
Math. Proc. Cambridge Philos. Soc. 102, pp. 103–112.
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Proofs



EDGE-COLOURING:

Instance: a graph G ;

Question: is G a ∆-edge-colourable graph?

I. Holyer (1981). TheNP -completeness of edge-colouring. SIAM J. Comput. 10.4, pp. 718–720.

D. Leven and Z. Galil (1983). NP -completeness of finding the chromatic index of regular graphs. J. Algorithms 4,
pp. 35–44.
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EDGE-COLOURING:

Instance: a graph G ;

Question: is G a ∆-edge-colourable graph?

This problem isNP -complete[Holyer 1981] even restricted to

d -regular graphs for any constant d > 3[Leven and Galil 1983]

I. Holyer (1981). TheNP -completeness of edge-colouring. SIAM J. Comput. 10.4, pp. 718–720.

D. Leven and Z. Galil (1983). NP -completeness of finding the chromatic index of regular graphs. J. Algorithms 4,
pp. 35–44.
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For any constant d > 3

EDGE-COLOURING(d -regular, (d −1)-edge-connected):

Instance: a d -regular (d −1)-edge-connected graph G ;

Question: is G a d -edge-colourable graph?
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Our results

Theorem

EDGE-COLOURING(5-regular, 4-edge-connected) is

NP -complete.
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Karp reduction

RG G ‡

A B

5-regular 5-regular 4-edge-connected

12



Turing reduction

RA

B
B

B

}

...
G

5-regular

G ‡

5-regular 4-edge-connected
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Parity Lemma

If G is d -regular d -edge-colourable graph and F ⊆ E (G ) is a

cut in G , then, for any d -edge-colouging of G with colour set

{1, . . . ,d },

f1 ≡ f2 ≡ · · · ≡ fd (mod 2) ,

being fα the number of edges in F coloured α ∈ {1, . . . ,d }.

α

α
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Theorem

EDGE-COLOURING(5-regular, 4-edge-connected) is

NP -complete.

Proof:

u ′

u

v ′

v

⇒

u ′

u

v ′

v

G G ‡
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Our results

Definition

A language L is said to be sparse if there is a polynomial p(n)

such that the number of words of length n belonging to L is

bounded above by p(n) for any n

S. Fortune (1979). A note on sparse complete sets. SIAM J. Comput. 5 (3), pp. 431–433.

S. R. Mahaney (1982). Sparse complete sets ofNP : Solution of a conjecture by Berman and Hartmanis. J. Comput.
Syst. Sci. 25, pp. 130–143.
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Our results

Definition

A language L is said to be sparse if there is a polynomial p(n)

such that the number of words of length n belonging to L is

bounded above by p(n) for any n

L = 5-regular 4-edge-connected non-5-edge-colourable

Fortune–Mahaney’s Theorem

If any sparse language is NP-complete or coNP-complete,

then P = NP

S. Fortune (1979). A note on sparse complete sets. SIAM J. Comput. 5 (3), pp. 431–433.

S. R. Mahaney (1982). Sparse complete sets ofNP : Solution of a conjecture by Berman and Hartmanis. J. Comput.
Syst. Sci. 25, pp. 130–143.
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Our results

Observation

No 5-snark can be SO

H

G

∑

u∈V (H )

(∆(H )−dH (u)) 6 ∆−2
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Our results

Observation

No 5-snark can be SO

H

G

∑

u∈V (H )

(∆(H )−dH (u)) 6 3
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Further investigation

Questions:

• Do 5-snarks contain 3-snarks as subgraphs?
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Further investigation

Questions:

• Do 5-snarks contain 3-snarks as subgraphs?

• Do they allow infinite family constructions?
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